
 

 
 

 
  
 
Q▪Kernel™ 
User Guide 
Version 6.0-3353 
 

 

Q▪Kernel™ is a product of QuasarSoft Ltd. 
  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 2 
 

 

License 
Q-KernelFree Copyright (c) 2013 QuasarSoft Ltd.  

Q-KernelFree is free software: you can redistribute it and/or modify it under the 
terms of the GNU General Public License (version 3) as published by the Free 
Software Foundation and modified by the QuasarSoft Ltd. exception. 

 

 

Q-KernelFree is distributed in the hope that it will be useful, but WITHOUT ANY 
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 
FOR A PARTICULAR PURPOSE. See the full license text at the following link 
<http://www.quasarsoft.com/license.html> 

For the purpose of applying the license to this document, I consider "source code" 
to refer to this document source (.docx) and "object code" to refer to the generated 
file (.pdf). 

 

 

 

 
 

QuasarSoft Ltd 

312-5th Avenue Suite No. 354 

Cochrane Alberta T4C 2E3 

Canada 

Tel. +1 (403) 450 3482 

www.quasarsoft.com 
  

The QuasarSoft Ltd. EXCEPTION 

You may not exercise any of the rights granted to You in any manner 
that is primarily intended for or directed toward commercial 
advantage or private monetary compensation. The exchange of the 
Program for other copyrighted works by means of digital file-sharing 
or otherwise shall not be considered to be intended for or directed 
toward commercial advantage or private monetary compensation, 
provided there is no payment of any monetary compensation in 
connection with the exchange of copyrighted works. 
 

http://www.quasarsoft.com/license.html
http://www.quasarsoft.com/


Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 3 
 

About this Document 
This document assumes that you already have background knowledge of the 
following: 

• The software tools used for building your application, mainly the compiler and 
linker 

• The C Programming language 

• The processor 

If you feel that your knowledge of C is not sufficient, we recommend The C 
Programming Language by Kernighan and Richie (ISBN 0-13-1103628), which 
describes the standard in C-programming and, in newer editions, covers the ANSI 
C standard. 

The Q▪Kernel™ Reference Guide is available to learn the API. 

How to Use this Manual 
The intention of this manual is to give you a detailed introduction to Q▪Kernel™. 
See the following scenarios: 

• Non-experienced RTOS developers should read chapters 3-8 to learn the 
basics of an RTOS. 

• Experienced RTOS developer should read chapters 3, 4, 6, 11 and 12 to learn 
the differences between new generation RTOS like Q▪Kernel™ and existing 
RTOSes. 

• Experienced Dual-Mode RTOS developer should read chapter 22 to get a fast 
start. 

• Unique Q▪Kernel™ functionality is described in chapter 5, 7, 10, 11, 19 and 
20.   

This document also serves as a source of information about Q▪Kernel™ and reveals 
a lot of information about the internals of the system. 

 

 

  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 4 
 

1. Introduction to Q▪Kernel™ .................................................................................................................. 8 
 What Makes Q▪Kernel™ Unique? ................................................................................................... 8 

 Dual-Mode RTOS ................................................................................................................... 8 
 Low-Power Operation ............................................................................................................. 8 
 Tick-Less Operation ............................................................................................................... 8 
 Zero Interrupt Latency ........................................................................................................... 8 
 Advanced Interrupt Stack ....................................................................................................... 8 
 Advanced Memory System ...................................................................................................... 8 
 Dynamic System ................................................................................................................... 8 

 Why Use a Multi-Threading RTOS? ................................................................................................ 9 
 Why Q▪Kernel™? ....................................................................................................................... 10 

2. Q▪Kernel™ Benefits .......................................................................................................................... 11 
 Dual-Mode RTOS ................................................................................................................. 11 
 License .............................................................................................................................. 11 
 Royalty free ........................................................................................................................ 11 
 Website .............................................................................................................................. 11 
 Higher Quality ..................................................................................................................... 11 
 Faster Delivery .................................................................................................................... 12 
 Lower Maintenance .............................................................................................................. 12 
 More Functionality ............................................................................................................... 12 
 Best Error Handling in the Business ....................................................................................... 12 

 Easy to Use ........................................................................................................................ 12 
 Support for the Most Advanced Interrupt Structure .................................................................. 12 
 Separation of Concerns ........................................................................................................ 12 
 Write Once and Re-Use ........................................................................................................ 12 
 Designed for Deterministic, Real-time Response ...................................................................... 12 
 Maximize Development ........................................................................................................ 12 
 Stack Tracing ...................................................................................................................... 13 

3. Q▪Kernel™ Architecture .................................................................................................................... 14 
 Segmented Interrupt Architecture ............................................................................................... 16 

 Zero Interrupt Latency RTOS ................................................................................................ 16 
 Interrupt Jitter .................................................................................................................... 17 
 Dual-Mode and the Segmented Interrupt Architecture .............................................................. 17 

 Tick-Less Operation ................................................................................................................... 17 
 Two timing sources ................................................................................................................... 18 
 Resource Usage ........................................................................................................................ 19 

 Kernel Interrupt (required) ................................................................................................... 19 
 Kernel Timer (required) ........................................................................................................ 19 
 Kernel RTCC (optional can be emulated) ................................................................................ 19 

4. Interrupt Service Routines (ISR) ........................................................................................................ 20 
 Keep ISR short ......................................................................................................................... 20 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 5 
 

 Interrupt Stack ......................................................................................................................... 21 
 Q▪Kernel™ ISR ......................................................................................................................... 22 
 Native Compiler Interrupt Syntax ................................................................................................ 23 
 Q▪Kernel™ Services Available from Interrupt Service Routines ........................................................ 25 

 Atomic Functions ................................................................................................................. 25 
 Deferred Functions .............................................................................................................. 25 
 List of Atomic and Deferred Functions .................................................................................... 26 

5. Fibers ............................................................................................................................................. 27 
 Priority Fibers ........................................................................................................................... 28 
 Queued Fibers .......................................................................................................................... 29 
 Q▪Kernel™ Invoked Fibers .......................................................................................................... 30 
 Stack Requirements .................................................................................................................. 30 
 Extensive Use of Fibers .............................................................................................................. 30 

6. Threads .......................................................................................................................................... 32 
 Multi-Threading ................................................................................................................... 32 
 Preemptive Multi-Threading .................................................................................................. 33 
 Cooperative Multi-Threading ................................................................................................. 33 

 Scheduling ............................................................................................................................... 33 
 Priority Inversion ................................................................................................................. 33 

 Thread Stacks .......................................................................................................................... 34 
 Shared Stack (PIC24E and dsPIC24E only) ............................................................................. 35 

 Thread Creation ........................................................................................................................ 37 
 Thread Events .......................................................................................................................... 38 
 Resuming a waiting or suspended thread ..................................................................................... 39 

7. Dual-Mode RTOS ............................................................................................................................. 40 
 Using the DSP Engine ................................................................................................................ 40 

8. Memory and Memory Allocation ......................................................................................................... 41 
 Memory Allocation..................................................................................................................... 42 
 Memory types .......................................................................................................................... 43 

 “Allocate only” Heap ............................................................................................................ 43 
 Variable Memory Blocks ....................................................................................................... 43 
 Fixed Memory Blocks ........................................................................................................... 44 
 Conventional C Runtime Heap ............................................................................................... 44 

 Choosing Type of Memory .......................................................................................................... 45 
 Using malloc(), free() and realloc() ............................................................................................. 45 
 Allocation and De-Allocation Speed ............................................................................................. 46 
 Memory Functions ..................................................................................................................... 47 
 Example Memory Allocation ........................................................................................................ 48 

9. Power Management .......................................................................................................................... 49 
 Interrupt Response Time in Low Power Mode ................................................................................ 50 

10. Statistic Services ............................................................................................................................. 51 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 6 
 

 Switch Notification ................................................................................................................ 51 
 Statistics .............................................................................................................................. 51 

11. Services and Objects ........................................................................................................................ 53 
 Dynamic Object Management and Naming ............................................................................... 54 
 Time-Out and Blocking Functions ............................................................................................ 56 
 Error Handling ...................................................................................................................... 56 

 Application Errors ................................................................................................................ 57 
 Notification of Errors ............................................................................................................ 57 
 Logging of Errors ................................................................................................................. 57 
 Error Handling Example ........................................................................................................ 58 

 Structures, Unions and Data Types .......................................................................................... 60 
 Common Structures, Unions and Defines ................................................................................ 60 

12. Critical Sections Services .................................................................................................................. 62 
 Critical Sections and Interrupts ............................................................................................... 62 

13. EventSet Services ............................................................................................................................ 63 
 EventSet Functions ................................................................................................................ 64 
 EventSet Example ................................................................................................................. 64 

14. Mutex Services ................................................................................................................................ 65 
 Priority Inversion .................................................................................................................. 65 
 Alternatives .......................................................................................................................... 66 
 Mutex Functions .................................................................................................................... 66 
 Mutex Example ..................................................................................................................... 66 

15. Semaphore Services ......................................................................................................................... 67 
 Semaphore Example .............................................................................................................. 68 

16. Pipe Services ................................................................................................................................... 69 
 Multiple Readers and Writers .................................................................................................. 71 
 Using Pipes with Messages ..................................................................................................... 72 
 Pipe Functions ...................................................................................................................... 73 
 Pipe Example ........................................................................................................................ 74 

17. Queue Services................................................................................................................................ 75 
 Queue Functions ................................................................................................................... 75 
 Queue Example..................................................................................................................... 76 

18. Publish/subscribe services ................................................................................................................. 77 
 Pub/sub functions ................................................................................................................. 78 
 Pub/Sub Example .................................................................................................................. 78 

 Subscriber is a function ........................................................................................................ 80 
 Subscriber is a queue........................................................................................................... 80 
 Subscriber is a pipe ............................................................................................................. 81 

19. Message Services ............................................................................................................................. 82 
 Messages and pipes ............................................................................................................... 84 
 Messages and queues ............................................................................................................ 85 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 7 
 

 Messages and publish/subscribe .............................................................................................. 85 
 Message Function .................................................................................................................. 86 
 Message Example .................................................................................................................. 87 

20. Timer and RTCC Services .................................................................................................................. 89 
 RTCC Services ...................................................................................................................... 89 

 Date and Time Formats ........................................................................................................ 90 
 µSecond Services .................................................................................................................. 91 
 Timer Functions .................................................................................................................... 92 
 RTCC and Date time Functions ................................................................................................ 93 

21. Installing and using Q▪Kernel™ .......................................................................................................... 94 
 Adding Q▪Kernel™ to your application ...................................................................................... 95 

 Using an object library ......................................................................................................... 95 
 Using a project library .......................................................................................................... 95 

 Using your own object library ................................................................................................. 95 
 Creating a new application ..................................................................................................... 96 

22. Glossary ........................................................................................................................................ 103 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 8 
 

1. Introduction to Q▪Kernel™  
Q▪Kernel™ is a Tick-Less Dual-Mode Real Time Operating System (RTOS) 
sometimes referred to as a kernel. Q▪Kernel™ is specially created for the modern 
processors and fully exploits the power of the processor and the development 
environment.  

 What Makes Q▪Kernel™ Unique? 
Q▪Kernel™ has some unique features not found in any other RTOS. The list of 
features is very complete, but a number of features really separate Q▪Kernel™ from 
the competition. Some of the features are describe below. 

 Dual-Mode RTOS 

Q▪Kernel™ combines the traditional thread-based kernel architecture for real-time 
control processing with specialized fibers for DSP and high dataflow operations. 
The architecture accommodates the different needs for both domains, by 
separating them. Q▪Kernel™ enables both types of application code to run fully 
optimized on a single processor and both fibers and threads use a common API.  

 Low-Power Operation 

Q▪Kernel™ provides idle detection and can switch the processor in a low-power 
mode on demand. This feature combined with Tick-Less operation provides the 
developer with the best tool to create applications that consume minimal power. 

 Tick-Less Operation 

Q▪Kernel™ operates Tick-Less that provides true µSec wait-time granularity and 
decreases power consumption significantly.  

 Zero Interrupt Latency 

Q▪Kernel™ never disables interrupts, not for a single cycle, and provides true Zero 
Interrupt Latency and eliminates interrupt jitter. 

 Advanced Interrupt Stack 

Q▪Kernel™ supplies an interrupt stack that switches the stack before the user 
interrupt code is executed. This implementation is unique in the business and 
minimizes RAM usage significantly.  

 Advanced Memory System 

Q▪Kernel™ supplies the developer with an advanced memory system, called 
variable memory blocks. This makes designing systems simpler and limits the RAM 
footprint. 

 Dynamic System 

Q▪Kernel™ is a dynamic system, meaning that resources can be returned to the 
resource pool when they are no longer required. This modern approach makes the 
design simpler, more functional, and limits the RAM footprint. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 9 
 

 Why Use a Multi-Threading RTOS? 
Multi-threading allows you to better utilize CPU resources. Multi-threaded systems 
are event driven and events can be handled as they occur, instead of looking for 
them and processing them as they are found. If one event has higher priority than 
another (e.g., a pump failure signal), Q▪Kernel™ can immediately run the higher 
priority thread regardless of what was being done, and get back to the lower 
priority ones when it is finished with the higher priority thread. If polling had been 
employed and a lower priority function was just invoked before the higher priority 
one, it would go unrecognized until polled (programmatically) in the code or until 
the lower priority code is complete 

Applications that don’t use a multi-threading RTOS must use the “superloop” 
approach. Essentially, this is a program that runs in an endless loop, calling 
functions to execute the appropriate operations. No real-time kernel is used, so 
Interrupt Service Routines (ISR) must be used for real-time parts of the software 
or critical operations (interrupt level). This type of system is typically used in small 
and simple systems. 

The “superloop” approach can become difficult to maintain if the program becomes 
more complex. Because one software component cannot be interrupted by another 
component (only by ISR’s), the reaction time of one component depends on the 
execution time of all other components in the system. Deterministic behavior is 
therefore poor. 

 

 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 10 
 

 Why Q▪Kernel™? 
Q▪Kernel™ is built from the ground up based on a modern architecture, and 
designed to handle interrupts better than any other RTOS on the market. It is 
specifically written for microcontrollers, so it is small and very fast. It uses 
advanced algorithms to optimize speed and is very versatile. If you currently use 
another RTOS and experience memory limitation, bad real-time behavior, long 
interrupt latencies, or slow throughput, Q▪Kernel™ can help you solve these 
problems. Q▪Kernel™ significantly reduces the memory foot print compared to 
other systems and the hard real-time features of Q▪Kernel™ solve a lot of 
deterministic issues.  

 

 
 

  

Q▪Kernel™ 
The only free RTOS in the world with: 

Dual-Mode and Tick-Less 
Lowest Power Consumption 

Integrated Power Management 
Zero Interrupt Latency 

Never Disable Interrupts 
No Interrupt Jitter 
Best Performance  

Threads and Fibers 
 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 11 
 

2. Q▪Kernel™ Benefits 
Q▪Kernel™ is designed for embedded applications including consumer and 
industrial electronics like set-top boxes, measuring devices, and other portable and 
handheld devices. The kernel automatically scales to the right size.  

As a customer, you will see the following benefits of using Q▪Kernel™ over other 
operating systems:  

 Dual-Mode RTOS 

Q▪Kernel™ combines the traditional thread-based kernel architecture for real-time 
control processing with specialized fibers for DSP and high dataflow operations. 
The architecture accommodates the different needs for both domains, by 
separating them. Q▪Kernel™ enables both types of application code to run fully 
optimized on a single processor and both fibers and threads use a common API.  

This architecture allows the designer to use a less powerful chip and/or bring down 
the operational frequency to save power. A Dual-Mode RTOS also supports fibers. 
Fibers can save a lot of RAM and allows the developer to support the same 
functionality on a smaller (and cheaper) micro-processor. 

 License 

Q▪Kernel™ is free software licensed under a modified GNU General Public License 
(version 3) as published by the Free Software Foundation. See the full license text 
at the following link <http://www.quasarsoft.com/license.html> 

An alternative commercial license is also available in case that: 

• You cannot fulfill the requirements stated in the "Modified GNU General Public 
License (version 3)" 

• You require direct technical support and you which to have assistance with 
your development 

• You require IP infringement protection 

Q▪Kernel-Pro™ is a commercial licensed version of Q▪Kernel-Free™. This license 
does not contain any reference to the "Modified GNU General Public License 
(version 3)". 

 Royalty free 

Both Q▪Kernel-Pro™ and Q▪Kernel-Free™ are royalty free.  

 Website 

All documentation and programming code can be downloaded from the website. 
This means that communication is fast and the customer can always access the 
latest documentation. 

 Higher Quality  

Higher quality is achieved by modular, well written code, automated tests, more 
than 96% code coverage, backward compatibility, extensive and usable 
documentation and a beta test program. 

http://www.quasarsoft.com/license.html


Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 12 
 

 Faster Delivery  

The high quality of the system and the unique Dual-Mode capability allows you to 
deliver faster. 

 Lower Maintenance  

A staff of dedicated professionals maintains all our products and bugs are repaired 
quickly. Electronic distribution of the system provides fast access to the latest 
software.  

 More Functionality  

Q▪Kernel™ provides much more functionality than competing products. This limits 
the amount of code that needs to be written by the developer and limits costs. 

 Best Error Handling in the Business 

While we all try to prevent errors most of us know that debugging is a part of 
development. Q▪Kernel™ error handling is the best in the business and will help 
the developer find bugs faster. 

 Easy to Use 

Q▪Kernel™ uses a consistent, intuitive API. No cryptic abbreviations and we provide 
complete documentation. This ensures that developers are productive sooner. 

 Support for the Most Advanced Interrupt Structure  

The advanced interrupt structure of new microcontrollers is completely supported 
and allows the developer to build hard real-time applications. Q▪Kernel™ hides al 
complexities of the advanced interrupt structure from the developer, which 
increases productivity. 

 Separation of Concerns 

Q▪Kernel™ enables the developer to concentrate on the specific application 
requirements, without having to worry about the timing and interrupt behavior. 
The deterministic and application aspects are separated.  

 Write Once and Re-Use 

The unique structure of Q▪Kernel™ makes it easy to organize software in drivers. 
Those drivers are written, tested and documented once and can be re-used in every 
project saving you money and decrease the time-to-market. 

 Designed for Deterministic, Real-time Response 

Real-time applications are called real-time for a reason. Real-time execution 
requires deterministic, fast interrupt response and fast context switching. 
Q▪Kernel™ utilizes an interrupt architecture that eliminates disabling of interrupts. 

 Maximize Development 

Increase quality and eliminate embarrassing recalls by finding bugs early. 
Q▪Kernel™ memory management, stack limiting features and strongly typed 
parameters protect the developer from a wide variety of problems and maximize 
development.  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 13 
 

 Stack Tracing 

Q▪Kernel™ is one of the few Real-time Operating Systems that utilizes the native 
stack limiting features of the micro controller during all operating modes like 
interrupt handling, fibers, scheduler and threads. This makes it simple to find errors 
and minimizes development time.  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 14 
 

3. Q▪Kernel™ Architecture 
The Q▪Kernel™ architecture is based on modern operating system concepts like 
micro-kernel and “Segmented Interrupt” architectures. Q▪Kernel™ is by design a 
Dual-Mode RTOS to support modern hardware concepts. 

With the unique capabilities of Q▪Kernel™, developers can optimize both the 
dataflow and control characteristics of the processor family. Such optimization 
ensures the efficiencies of applications running on these new generation devices 
that greatly reduce hardware cost and power consumption.  

By combining a lightweight kernel, minimal context for high dataflow (like DSP), 
with a prioritized, preemptive kernel for event-driven threads, Q▪Kernel™ ensures 
that both control and high data load application code execute with maximum 
efficiency. Q▪Kernel™ is organized by priority so dataflow processing controlled by 
a dedicated scheduler always operating at a higher priority than control operations.  

To implement this unique architecture the micro controller has to support 3 zones 
of operation, where a higher zone can interrupt a lower zone. The following page 
depicts the system design.  

• Zone 2-15 contains all Interrupt Service Routines (ISR) and traps including 
the Kernel interrupt, Timer interrupt and RTCC interrupt if applicable.  

• Zone 1 contains all fibers including the scheduler.  

• Zone 0 contains all priority based threads1.  

 

Zone 2-15 

Exceptions and traps  

User interrupts  

Q▪Kernel™ Timer and RTCC interrupt 

Zone 1 

Priority fiber with priority 4 to 1 

Queued fibers First In First Out (FIFO) 

Q▪Kernel™ scheduler and notification fibers 

Zone 0 

Threads with priority from 250 to 1 

Idle thread 

Switch processor in Sleep or Idle mode 

 

  

                                                   

 
1 Some systems use the word tasks instead of thread. We think that the word thread is more accurate. A task 
(amount of work) can be implemented as a thread or fiber. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 15 
 

 

  
Interrupts are 

handled based on 
their priority.  

ISR can use the 
interrupt stack. 

Threads run in 
parallel and 

require their own 
stack 

Lowest 
Priority 

Higher 
Priority 

Fibers run 
priority based 
and use the 
interrupt stack 

Fiber provided by the developer 

Thread provided by the developer 

Kernel and Scheduler  

Priority 
Fiber 

Control 

Queued 
Fiber 

Control 

Expired 
RTCC 

Control 

Expired 
Timer 

Control 

 

Thread 
Scheduling 

Fiber Fiber Fiber Fiber Fiber 

User Thread 

User Thread 

User Thread 

User Thread 

Idle Thread 

Depending on  
the state of the  
kernel, some functions 
must be delayed.  

See API documentation 

 

 Kernel   Interrupt 

 

Kernel Timer 

 

Lowest priority Highest priority 

 
Zone 2 

Zone 0 
User threads 
Idle thread 

ISR provided by the developer 

 
Zone 1 

Kernel RTCC 

ISR 

ISR Enabled Functions  

ISR ISR 
User Interrupts 

ISR 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 16 
 

 Segmented Interrupt Architecture  
Q-Kernel uses the Segmented Interrupt Architecture. Most competing products use 
the unified interrupt architecture. The difference is how the RTOS handles critical 
sections. A critical section is a sequence of code that must execute atomically.  

The Unified Interrupt Architecture allows services to be called from interrupts but 
the RTOS has to disable interrupts around critical sections to avoid non-atomic 
changes to data. 

Services in the Segmented Interrupt Architecture will always be called outside a 
critical section or will execute atomic. Non-atomic services that are called from an 
ISR while a critical section is executed are deferred with Deferred Interrupt 
Handlers (DIH). There is no need to disable interrupts.  

 

 

This architecture provides excellent interrupt response, simplifies the development 
and provides Zero Interrupt Latency with full thread integration2 and 
communication and prevents interrupt jitter. The architecture permits peak 
interrupt loads to be handled without the loss of information, which allows for tight 
integration between interrupts and fibers. 

 Zero Interrupt Latency RTOS3 

Interrupt latency is the time between an interrupt request and the execution of the 
first instruction of the Interrupt Service Routine. The interrupt latency is the sum 
of a lot of different smaller delays explained below. 

The first delay is typically in the hardware. The interrupt request signal needs to 
be synchronized to the CPU clock. The CPU will typically complete the current 
instruction. The modern hardware architectures use instructions that are single 
cycle or double cycle and have fixed 4 to 8 cycle interrupt latencies. 

The most important delay is because the interrupts are disabled. RTOS based on 
the Unified Interrupt Architecture temporarily disable the interrupts to protect 
critical sections including thread switching. 

 

 

                                                   

 
2 Some competitive systems claim Zero Interrupt Latency but do not allow the interrupt handler to communicate with 
the threads and fibers or even ready waiting threads, which defies the purpose. 
3 Zero interrupt latency in the strict sense is not possible. What we mean when we say "Zero Interrupt Latency RTOS" 
is that there is no added latency to interrupts because we use an RTOS. Some MCU’s don’t implement the required 
atomic instructions and interrupts are disabled between a few instructions adding a few cycles to the latency.  

Q▪Kernel is a Zero Interrupt Latency RTOS 
  

 

Q▪Kernel never disables interrupts. 
  

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 17 
 

Q▪Kernel™ never4 disable interrupts, so Q▪Kernel™ will have the same worst-case 
interrupt latency as a system running without the Q▪Kernel™.  

 Interrupt Jitter 

Jitter is the variation in interrupt latency. Disabling interrupts always leads to 
interrupt jitter, so the Unified Interrupt Architecture can never prevent interrupt 
jitter. Modern processor architectures use many registers so context switches cost 
more time and interrupts are disabled longer. For some applications, this can cause 
problems like lost interrupts. 

 

 

 Dual-Mode and the Segmented Interrupt Architecture 

Every Dual-Mode RTOS employs a Segmented Interrupt Architecture but not all 
RTOS with a Segmented Interrupt Architecture are Dual-Mode. Segmented 
interrupt architecture requires a Deferred Interrupt Handler (DIH), which is part of 
a Dual-Mode RTOS. A real Dual-Mode RTOS specifies Deferred Interrupt Handlers 
and implements a number of fiber mechanisms, like spawning fibers, fiber priorities 
and API-fiber communication.  

 Tick-Less Operation 
Every RTOS, including Q▪Kernel™, requires mechanisms to support delay and time-
out functionality. Every function that has the potential to wait can specify a 
timeout, which is used to specify the maximum time a thread is willing wait for a 
resource to become available. If the specified period expires and the resource is 
not available, the thread will return to the caller indicating that it timed-out. For 
this functionality and delay functions to work the RTOS must keep track of time.  

Most RTOS use a timer interrupt to keep track of the timing of the RTOS. This 
interrupt is called the tick and fires every 100 µSec to one mSec.  

The Q▪Kernel™ architecture provides Tick-Less operation. The system calculates 
the expiration time for every wait request and programs the timer accordingly. 
Tick-Less operation is more complex but has a number of advantages compared to 
non-Tick-Less operation. 

• The granularity of the timer is much finer. Q▪Kernel™ uses a granularity of 
only one µSecond.  

• There is no processing of ticks so the power consumption will be smaller. 
Q▪Kernel™ combines Tick-Less operation and other low-power functionality 
to produce an RTOS that consumes minimal power. 

                                                   

 
4 Some MCU’s don’t implement the required atomic instructions and interrupts are disabled between a few instructions 
adding a few cycles to the latency. 

Q▪Kernel prevents interrupt jitter 
 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 18 
 

• A non-Tick-Less RTOS uses the tick for all its timing operations and this will 
limits the maximum wait time. The maximum wait time with a 100 µSec tick 
is around 2 days. Q▪Kernel™ supports maximum wait times that are greater 
than 60 years. 

 Two timing sources 
The Q▪Kernel™ architecture provides two sources for timing. Short times are based 
on the processor clock and or timer and long times are based on a Real Time Clock 
and Calendar (RTCC). Q▪Kernel™ uses a separate clock source for long times 
because the processor clock is very inaccurate over long times and there are more 
opportunities to save power. The short times are implemented by a 32-bit timer, 
called the kernel timer and the long times are based on the RTCC. 

Short times are based on one cycle up to 2 billion cycles. A frequency of 100MHz 
provides a maximum wait time of 20 seconds. The long wait time granularity is one 
second and the maximum wait time is more than 60 years. There is an overlap in 
the one to 20 second range. We advise to use the short time up to the 10 seconds 
range. In this range the timer is more accurate because the granularity of 1 Sec is 
large compared to the wait time.  

The RTCC is default implemented as an emulated RTCC. The developer can 
implement its own RTCC that is more effective or provides a better power savings. 
Working examples, based on timers and a hardware RTCC are included. If included 
in the application that code will be executed for optimal performance or power 
savings. See the examples in yRtcc2.c and qRtcc3.c. 

 

 

 

 

  

Q▪Kernel will emulate the RTCC if there is 
not one available 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 19 
 

  

 Resource Usage 
Q▪Kernel™ uses a number of resources to operate. These resources cannot be 
disabled or manipulated directly by addressing registers or allocating memory. 
Only one resource is required, the kernel interrupt. All other resources are optional. 
Resources are specified in the configuration.  

 Kernel Interrupt (required) 

Q▪Kernel™ is activated by the kernel interrupt. This interrupt is a priority 1 interrupt 
and will be used exclusively by Q▪Kernel™. The interrupt can be configured and is 
port specific. Q▪Kernel™ requires nested interrupt priorities, meaning that 
interrupts can be interrupted by higher priority interrupt and interrupts should not 
be disabled5.  

 Kernel Timer (required) 

Q▪Kernel™ requires6 a 32-bit timer for short time functions. This interrupt is a 
priority 2 interrupt and will be used exclusively by Q▪Kernel™. The interrupt is 
configurable and port specific. Priority 2 is the highest priority used by Q▪Kernel™ 
which means that zero interrupt latency and jitter free operation can be 
accomplished with interrupt levels 3 to 7.  

 Kernel RTCC (optional can be emulated) 

The kernel RTCC can be implemented in hardware, software or emulated and is 
optional.  

• Emulated RTCC This type of RTCC requires the kernel timer.  

• Timer1 RTCC If a Timer1 RTCC is specified; the timer will be used to provide 
the 0.5 second interrupt. The device will be used exclusively by Q▪Kernel™ 
and will use interrupt priority 2. 

• Hardware RTCC If a hardware RTCC is specified the RTCC will be used 
exclusively by Q▪Kernel™ and will use interrupt priority 2. Q▪Kernel™ will 
control the hardware RTCC with the exception of the calibration.  

• External RTCC If an external RTCC will be used the external device has to 
communicate with the processor. Please contact QuasarSoft Ltd. to discuss 
the options. 

If long wait times and real time clock information is not required this resource does 
not have to be configured. 

 

                                                   

 
5 Q▪Kernel™ never disables interrupts but the developer can disable interrupts for short times to do a specific task 
like programming the hardware or programming flash. We do not recommend it though and if it is required keep the 
time as short as possible. Interrupts should not be disabled after the start of Q▪Kernel qKrnStart(). 
6 Q▪Kernel™ can work with a 16-bit timer. Please contact QuasarSoft for more information. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 20 
 

4. Interrupt Service Routines (ISR)  
In real-time systems, Interrupt Service Routines should be kept as short as 
possible. Non-essential interrupt service code should be deferred for optimal 
performance. Interrupt handlers should be divided into two parts: the First-Level 
Interrupt Handler (FLIH) and the Second-Level Interrupt Handlers (SLIH). FLIHs 
are also known as hard interrupt handlers or fast interrupt handlers, and SLIHs are 
also known as slow/soft interrupt handlers. Another name for this mechanism is 
"Top and Bottom halves". 

The job of a FLIH is to quickly service the interrupt and to record critical 
information, which is only available at the time of the interrupt, and schedule the 
execution of a SLIH for further long-lived interrupt handling. The FLIH (ISR) reads 
or writes date to hardware, and then it schedules the handling of new information 
at a later time to the SLIH (fiber or thread) that communicates the information to 
the rest of the system. See this wiki article. 

Keeping the interrupts as short as possible is important because the underlying 
hardware blocks interrupts with the same or lower priority until the ISR returns. 
The highest interrupt level blocks all other interrupt activity.  

While dividing Interrupt Service Routines in two parts provides the best 
performance, Q▪Kernel™ also support the more traditional approach where all work 
is done in the ISR. 

 

 

Q▪Kernel™ does not impose any restrictions to ISRs. There are no required 
prologue or epilogue, like EnterISR() and ExitISR(). The developer can use local 
variables in the ISR, call other functions that are unavailable at compile time and 
use almost all7 Q▪Kernel™ functions.  

 Keep ISR short 
The essence of a good performing application is to keep interrupts as short as 
possible. This is so important because one interrupt can block other interrupts. 
Interrupts at the highest level block all other activity. By keeping all interrupts 
short the chance of missing one because very small. 

The standard way to keep interrupts short is to interact with the hardware in the 
interrupt and do the rest of the work in a thread or fiber. Q▪Kernel™ has several 
ways to do this. All signal functions can be called from an interrupt and for very 
high loads fibers can be spawned. This is very useful because in that case the 
priority is not related to a thread. 

                                                   

 
7 All functions with the exception of functions that want to wait. 

Q▪Kernel simplifies writing ISR's 
  

 

http://en.wikipedia.org/wiki/Interrupt_handler


Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 21 
 

 Interrupt Stack 
Q▪Kernel™ reduces the total stack requirements significantly with the use of an 
interrupt stack. Without the interrupt stack, stack requirements of the ISR must 
be added to each thread stack because it is unknown, which thread is active when 
the interrupt occurs.  

There are two ways to implement the interrupt stack.  

• The Post-Push implementation switches to the interrupt stack after saving 
the registers. The registers are saved on the thread stack and the local 
variables and stack space for functions are stored on the interrupt stack. 

• The Pre-Push implementation stores both the registers and the local 
variables on the interrupt stack.  

Q▪Kernel™ implements the pre-push stack implementation. The following example 
describes common interrupt requirements for the PIC32. Saving registers for a 
function call requires approximately 100 bytes, and the space for local variables 
and other function calls is approximately 80 bytes. 

For an application with 4 interrupt levels and 15 threads the stack requirements 
are: 

• No Interrupt stack (100+80) * 4 = 720 bytes per thread, and 10800 bytes 
for 15 threads. 

• Post-Push 100*4 = 400 bytes per thread, and 6000 bytes for 15 threads 
plus 4*80 = 320 bytes for the interrupt stack. Total = 6320 bytes 

• Pre-Push (100+80) * 4 = 720 bytes for the Interrupt stack. There are no 
thread stack requirements so the total = 720 bytes. 

So the Q▪Kernel™ implementation save more than 10kb compared to competitor’s 
without an interrupt stack and almost 6Kb compared to competitors with a post-
push interrupt stack.   

 

 

Fibers, the scheduler and all ISRs plus all the functions that are called from those 
components use the interrupt stack. 

The size of the interrupt stack is influenced by the following: 

• Compiling with the code optimizer will significantly limit the stack 
requirements. If a compiler is used with a limited code optimizer, select the 
option that disables the frame pointer. 

• Nesting interrupts add to the required interrupt stack size.  

• Fibers use the interrupt stack. Because all activity is controlled and 
synchronized in the scheduler, only the function with the largest stack 
requirements need to be considered.  

Q▪Kernel “Pre-Push Interrupt” Stack 
reduces RAM requirements significantly 

  
 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 22 
 

The best way to determine the size of the interrupt is to start big, like 500 bytes. 
The function qKrnStack() returns the stack space in use in bytes.  

While the interrupt stack minimizes the memory consumption there is overhead 
involved in stack-switching. For that reason the interrupt stack is optional.  

In most cases it is better to use the interrupt stack. The only exception is when the 
extra delay introduced by the stack switching is not acceptable.  

 Q▪Kernel™ ISR 
Writing an ISR which uses the interrupt stack is very simple. Write the ISR as if it 
is a normal function. The stack switching is done automatically, just concentrate 
on the functionality.  

The following example specifies how to set up a TMR2 interrupt. The function 
qISR() will create code on the fly to define the interrupt and execute the 
functionality as described below. 

A PIC24 example 

 

A PIC32 example 

 

The function qISR_FAST() uses the processors shadow registers and is faster if 
they are available. The port description specifies how much space is used and if 
there are any limitations. 

The symbols used in the function qISR() and qISR_FAST are dependent on the 
port. If the compiler does not recognize them, an error will be generated. See the 
example below. 

 

qISR(_T2Interrupt) {      // 16-bit PIC example 
    _T2IF = 0;            // Clear the interrupt flag 
    ………                   // Do work 
} 
 

qISR(_TIMER_2_VECTOR) {   // 32-bit PIC example 
    IFS0bits.T2IF = 0;    // Clear the interrupt flag 
    ………                   // Do work 
} 
 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 23 
 

 

 Native Compiler Interrupt Syntax 
Sometimes the activity in the ISR is limited that it is just not worth the overhead 
of the interrupt stack. That is definitely the case if the ISR is simple and/or it uses 
a fiber that does most of the work.  

Calling a function in an ISR generates so much overhead that is almost always 
better to use the Q▪Kernel™ ISR. The compiler has no knowledge of which registers 
are used by functions so it has to save a lot of registers. Some Q▪Kernel™ functions 
are implemented as macros to prevent this problem from occurring. The following 
example is taken from the 16-bit PIC implementation and specifies a TMR5 
interrupt service routine. qFbrSpawn1() is a macro so the compiler can optimize 
this and will not save W0-W7 on the stack. The statistics are not adjusted so cycles 
are added to the interrupted thread. This is not a problem because the amount of 
cycles is very small.  

Example8 of an interrupt service routine 

 

  

                                                   

 
8 This example is based on the PIC24 and dsPIC port. The Q▪Kernel implementation of other ports are similar in speed 
and stack usage. 

qISR(_INT1Interrupt) { 
    _INT1IF = 0;          // Clear the interrupt flag 
    ………                   // Do work 
} 
 
Opn.c:114:1: error: pasting "(" and "_INT1Interrupt" 
... 
Opn.c:114: warning: return type defaults to 'int' 
Opn.c: In function 'qISR': 
Opn.c:115: warning: control reaches end non-void 
function 

void __attribute__ ((__interrupt__, AUTO_PSV)) 
                        _T5Interrupt(void){ 
    _T5IF = 0;             // Clear the interrupt flag 
    PORTAbits.RA5 = 1;     // Indicate to the hardware 
    qFbrSpawn1();          // Spawn the priority fiber 
} 
 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 24 
 

The generated code looks as follows:  

 

It takes a total of 7 cycles to execute the interrupt service routine and return to 
the code that was interrupted. That is less than 0.5 µSec on a PIC-24F and 175 
nSec on a PIC-24H or dsPIC-33. It only uses 4 bytes on the stack for the return 
address. Because no registers are used there is no difference between the fast 
interrupt (shadow attribute) and the standard interrupt so the fast interrupt can 
be used for something else.  

 

 

The qFbrEnqueueX() functions are also defined as macros and use a limited amount 
of registers. By using those functions in combination with the shadow attribute, no 
stack-space is used and only one push.s and pop.s are generated. This combination 
creates very short interrupt response times and does not use thread stack space. 

 

 

  

180:    void __attribute__((__interrupt__, AUTO_PSV)) 
                         _T5Interrupt(void) { 
181:                _T5IF = 0 ;  // Clear interrupt 
flag 
 02E84  A98087     bclr.b 0x0087,#4 
182:                PORTAbits.RA5 = 1; 
 02E86  A8A2C2     bset.b 0x02c2,#5 
183:                qFbrSpawn1(); 
 02E8C  884020     bset.b 0x0838,#2 
 02E8E  804001     bset.b IEC1, #2 
4:               } 
02E96  064000      retfie 
185:                

It takes only 175 nanoseconds to handle an 
interrupt and spawn a priority fiber 

 
 

Priority fibers are unique to Q▪Kernel™. 
They are super-fast and very simple.  

 

 
 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 25 
 

 Q▪Kernel™ Services available from ISR’s 
The Segmented Interrupt Architecture only allows interrupts to call services when 
there is no ongoing critical section or the function must be atomic. If the function 
is not atomic, it must be deferred when the system executes a critical section. 
Q▪Kernel™ provides a large number of signal functions that automatically defer if 
required and a set of functions that operate atomic. There is no difference between 
atomic and deferred functions for the developer. The only difference is how they 
operate internally. 

Some competing products us different functions per environment, like SignalISR() 
or SignalThread(). This creates problems if there are parts of programs that are 
called from ISR’s and threads. For this reason, all Q▪Kernel™ signal functions work 
in every zone, in ISR’s, threads and fibers. 

 Atomic Functions 

Some functions operate atomically and they do not rely on the state of the kernel 
(critical sections). This makes atomically operated functions very fast. Most 
competitive systems do not use atomic operations. 

Atomic operations are available for the following services: 

• Queuing function to run as fibers and spawning priority fibers. These 
functions are essential because they are used to start deferred functions. 

• Allocating and freeing Fixed Memory Blocks. 

• Allocating and freeing messages based on Fixed Memory Blocks. 

• Acquiring of a semaphore without blocking. 

 Deferred Functions 

Deferred functions check the state of the kernel and will execute directly or will 
defer the function and execute it in a fiber.  

 

 

  

All signaling functions can be called from 
an ISR’s and the kernel will decide if it 

needs to defer.   

Functions that wait are not allowed to be 
called from ISR’s.   



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 26 
 

 List of Atomic and Deferred Functions 

Function Description Type 

qEvtSignal() Signal an event to an event-set Deferred 

qFixAlloc() Allocate fixed memory block Atomic 

qFixAllocClr() Allocate fixed memory block and clear Atomic 

qFixFree() Free a fixed memory block Atomic 

qFbrEnqueue0() Queue a fiber with no parameters Atomic 

qFbrEnqueue1() Queue a fiber with 1 parameter Atomic 

qFbrEnqueue2() Queue a fiber with 2 parameters Atomic 

qFbrSpawnX() Spawn priority fiber. (X = 1, 2, 3 or 4) Atomic 

qMsgFixAlloc() Allocate message from fixed memory Atomic 

qMsgFree() Free a message  Deferred 

qMsgPublish() Publish a message to all subscribers Deferred 

qMsgRead() Read a message from a pipe Deferred 

qMsgWrite() Write a message to a pipe Deferred 

qPipGet() Read from a pipe without synchronization Atomic 

qPipPut() Write to a pipe without synchronization Atomic 

qPipRead() Read from a pipe and notify writer Deferred 

qPipWrite() Write to a pipe and notify reader Deferred 

qSemAcquireNB() Acquire a semaphore without blocking Atomic 

qSemRelease() Release a semaphore Deferred 

qThrEvtSignal() Signal an event to a thread Deferred 

qThrResume() Resume a suspended thread Deferred 

qTmrStart() Start a timer Deferred 

qTmrStop() Stop a timer Deferred 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 27 
 

5. Fibers 
A fiber is program code whose primary use is to provide a low latency means of 
executing in response to external interrupts. Each fiber executes at a given 
software priority level. The Q▪Kernel™ fiber scheduler calls each fiber when it 
determines that the fiber has to run. A fiber has no context9 upon entry and must 
perform any required data initialization upon entry. When its operations are 
complete, the fiber returns to the Q▪Kernel™ scheduler without context. This is the 
run-to-completion execution model. 

Fibers improve efficiency of high data-load or Digital Signal Processing and provide 
fast interrupt handling and low latency. They are optimized for cooperative 
scheduling and fast interrupt response, to support the tight time window once data 
is collected. Fibers are stateless and support a single stack to sustain the required 
quick context switches. 

 

 

Some of the common properties of fibers are: 

• Fibers can be started from threads and interrupt service routines. 

• Fibers run in the kernel, they have a priority between the highest priority 
thread and the lowest interrupt handler. 

• Fibers do not need a separate stack. They use the interrupt stack. 

• Fibers are fast, very fast 

• Fibers run always inside a critical section, so they can access shared data10. 

• Fibers can use almost all services with the exception of blocking functions. 

• Fibers cannot preempt, so once they are started they finish and can only be 
interrupted by an ISR. 

There are priority based fibers, queued based fibers and Q▪Kernel™ invoked fibers. 
Fibers give Q▪Kernel™ a significant advantage over the competition because 
interrupt and data handling is much faster.  

 

                                                   

 
9 Queued fibers do not have a context but include one or two parameters specified during queuing. 
10 Shared data can be used between threads and fibers. Data cannot be shared with interrupt service routines. 

Fibers are the best mechanism for handling 
high data-load and interrupt load.  

Fibers combine low latency with excellent 
performance. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 28 
 

There are three types of fibers, priority fibers, queued fibers and kernel invoked 
fibers. They are discussed in the following chapters. 

 Priority Fibers 
Priority fibers are the fastest mechanism in Q▪Kernel™ because they can be started 
from interrupts with minimum overhead. Priority fibers are functions without 
parameters that are created with the function qFbrCreate() and are activated with 
the function qFbrSpawnX () where 1 is the priority from 1 to 4. 

 

 

Priority fibers are not queued and their standard use is to call them from interrupts 
or other heavy data-load applications. The priority is a number from one to four. 
Four is the highest priority and one the lowest. Two priority fibers can’t have the 
same priority so in total four priority fibers are supported. 

See the following example: 

 
 

The first function is the ISR and the second the fiber. The ISR compares 2 input 
ports. If both conditions are true it sets another port and spawns the fiber. The 
qFbrSpawnX() is a macro so the interrupt function does not have to save W0 to 

// This example relies on the fact that the function 
// ReadyEvent is defined as priority fiber 2 with the  
// function qFbrCreatePrio before it can be used 
 
void __attribute__((__interrupt__))INT0Interrupt(void) 
{ 
  __INT0IF = 0;             // Clear the interrupt  
  if (PORTCbits.RC3 && !PORTAbits.RA3) {  
                            // Direction the same 
    PORTCbits.RC5 = 1;      // Indicate to hardware 
    qFbrSpawn2();           // Call the fiber  
  } 
  else  
    PORTCbits.RC4 = !PORTCbits.RC4;// Counter hardware 
} 
 
 
// This is the fiber function 
void ReadyEvent(void) { 
    ...    //Do work  
} 
 

Priority fibers are the fastest mechanism to 
spawn a fiber from an ISR 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 29 
 

W7 on the stack. After the ISR is done the fiber is executed. The fiber runs before 
all threads and can execute most services.  

 Queued Fibers 
Queued fibers are functions that can be queued from an interrupt. Queued fibers 
will be executed after all interrupts and priority fibers are processed but before the 
highest priority thread. Fibers can be functions with zero, one or two parameters.  

The functions qFbrEnqueue0(), qFbrEnqueue1() and qFbrEnqueue2() do all the 
work. The size of the fiber queue must be defined in the initialization section of the 
system. Every element of the fiber queue consists of three pointers and is allocated 
from the heap during initialization. Queued fibers don’t have to be created they 
just have to be queued. The queue has limited space. If an application generates 
more entries than can be processed, the queue will fill up.  

 

 

Q▪Kernel™ uses queued fibers in signaling functions.  

 
The first function in the example is an interrupt handler that reads from port E and 
loads the function and data in the fiber queue. After all interrupts are handled the 
system processes the information in the fiber queue. It will call the fiber (doData) 
with the data. This function will signal the display thread. This approach guarantees 
that even with a very high interrupt load the sequence of the data is not lost. A 
high interrupt load means that the fibers are not running frequently. Because the 
data is queued nothing will be lost and data is still processed in sequence. The ISR 
uses only a few bytes of the thread stack because shadow registers are used. 

qISR_FAST(_INT0Interrupt) { 
    _INT0IF = 0;              //Clear interrupt  
    LATDbits.LATD8 = 0;       //set indicator 
    qFbrEnqueue1(doData,(void*)PORTE);  
}                             //proces in fiber 
 
void doData(void* dataE) {    //function executed as … 
   int data = (int)dataE;     //… a fiber 
   … …                        //Do work  
   if (workDone)              //if done 
        qThrEvtSignal(pThrDisplay,EVT_DSP); 
                              //display processed data 
} 

Queued fibers can queue a function and the 
required data in one atomic operation. 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 30 
 

Example 

 
In the example above, a thread is signaled and the queued fiber details are handled 
automatically and transparently by Q▪Kernel™.  

 Q▪Kernel™ Invoked Fibers 
The Q▪Kernel™ scheduler itself runs as a fiber so all functions called from the 
scheduler are also fibers. The scheduler can activate the following: 

• Expired timers. These events occur when a timer object reaches its time. It 
will call the functions that were defined when the timer was created. 

• Switch notification11. The function qKrnNtfSwitch() will be called every time 
the kernel executes a context switch. Applications can use this event to 
implement functionality that depends on context switching. 

 Stack Requirements 
All fibers run after each other in priority sequence. This means that the stack 
requirements are based on the stack requirements of the largest fiber. When a 
fiber is activated by the kernel the stack has been switched from the interrupted 
thread to the interrupt stack. So the interrupt stack should be large enough to 
accommodate the kernel and the largest fiber.  

 Extensive Use of Fibers  
Fibers are the essence of all Dual-Mode Real Time Operating Systems but caution 
is required. Threads are interrupted by fibers and can become non-responsive. The 
use of fibers should be balanced with the required thread response time. On the 
other hand, an application with a high interrupt load that uses threads instead of 
fibers will see thread starvation earlier than a fiber orientated application. It will 
create more thread switching and thread blocking.  

 

 

                                                   

 
11 Switch notification is mostly called as a fiber but in some cases as a normal function in the pre-empted thread. 
This does not have many consequences because the function is called in a critical section. 

qISR(_INT0Interrupt) { 
    _INT0IF = 0;              //Clear interrupt  
    qThrEvtSignal(pThrHanlde,0x0100); 
}                             //Signal the thread 
 

The developer should balance the use of 
fibers with the required thread response 
time. In most cases, fibers can be used 
extensively before thread starvation.  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 31 
 

The link below compares a traditional RTOS and a Dual-Mode RTOS on Blackfin 
hardware. It shows that the difference in performance increases if the data load 
increases. This article uses the name Task for a Q▪Kernel™ Thread and uses the 
name Thread for a Q▪Kernel™ Fiber. 

http://i.cmpnet.com/embedded/europe/esejun05/esejun05p38.pdf 

  

http://i.cmpnet.com/embedded/europe/esejun05/esejun05p38.pdf


Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 32 
 

6. Threads 
A thread consists of three parts; a data structure called a Thread Control Block 
(TCB) that holds information about the thread, the thread stack and the program 
code for that thread. The TCB is used to communicate with the thread and the 
stack is used to store local data for the thread. 

A thread is a key component in any Q▪Kernel™ based system design. Each 
application consists of many threads that communicate with each other. A thread 
executes when the Q▪Kernel™ scheduler determines that the resources required 
by the thread are available and there are no threads with high priority ready to 
run. When it begins running, the thread has control of all of the system’s resources. 
A thread is always in one of the following states: 

• Suspended means that the thread is not scheduled by time but must be 
activated by an occurrence on an object event or be resumed by another 
thread. The developer can create a thread in the suspended state or ready 
state.  

• Wait means that the thread is waiting for an event to occur but is also 
scheduled to be timed out. The Q▪Kernel™ scheduler provides short wait 
times, provided by the timer and long wait times provided by the RTCC. This 
unique approach provides accurate long waiting times and limits power 
consumption. 

• Ready means that the thread is available for execution. The developer can 
create a thread in the ready or suspended state. 

• Running means that the thread is scheduled by the kernel to run. Only one 
thread can run at a time and this is always the thread with the highest priority 
in the ready list. 

Q▪Kernel™ supports the ability of a thread to wait for the occurrence of an event 
or the availability of a needed resource before continuing. Q▪Kernel™ always 
associates the waiting thread with a particular object relating to the blockage 
cause.  

During normal operation, some threads will be ready to execute and some will wait 
for a specific event to occur. Q▪Kernel™ provides three lists to perform its 
operations, the ready list, the timer list, and the RTCC list. The ready list is sorted 
on thread priority, from high to low, and the Timer and RTCC lists are sorted on 
time, from small to large.  

 Multi-Threading 

In this context, a thread is a function running on a microcontroller with Q▪Kernel™. 
Without a multi-threading RTOS, only one thread can be executed by the CPU at a 
time. This is called a single-thread system. A real-time operating system allows 
the execution of multiple threads in parallel on a single CPU. All threads execute 
as if they completely own the entire CPU. Multi-threading allows you to switch 
between sections of code, giving the appearance that the CPU is doing two or more 
things at once. In reality, it is doing a little bit of each in succession. It is possible 
to run the same code in multiple threads depending on what the code does and 
only if the code is reentrant. There are two types of multi-threading and Q▪Kernel™ 
supports both. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 33 
 

 Preemptive Multi-Threading 

Preemptive multi-threading is a type of multi-threading where the thread can be 
stopped at any time or instruction, and CPU time is switched to another thread. In 
other words, a thread switch occurs. In preemptive multi-threading, an interrupt 
from a periodic timer or from a peripheral usually causes preemptive activity. In 
fact, an ISR preempts execution of code while it services the interrupt. In most 
RTOS, it simply returns back to the point of interruption, while Q▪Kernel™ can 
resume execution of another thread. 

 Cooperative Multi-Threading 

Cooperative multi-threading occurs when the programmer yields execution to 
another thread with the same priority programmatically. Cooperative multi-
threading is implemented but we recommend for new project to give every thread 
its own priority which means that the system will use preemptive multi-threading. 

 Scheduling 
There are different algorithms that determine which thread to execute, called 
schedulers. All schedulers have one thing in common – they distinguish between 
threads that are ready to be executed (in the READY state) and threads that are 
suspended (in the WAIT state) for any reason (delay, waiting for message queue, 
waiting for semaphore, waiting for an event, and so on). The scheduler selects one 
of the threads in the READY state and activates it. The thread which is currently 
executing is referred to as the active thread. The main difference between 
schedulers is how they distribute the computation time between the threads in 
READY state. Q▪Kernel™ implements priority-controlled scheduling. 

In real-world applications, different threads require different response times. For 
example, in an application, that controls a motor, a keyboard, and a display, the 
motor requires a faster reaction time than the keyboard and display. While the 
display is being updated, the motor needs to be controlled. This makes preemptive 
multi-threading a must. Other scheduling mechanisms, like Round robin do not 
work for embedded systems because it cannot guarantee a specific reaction time. 

In priority-controlled scheduling, every thread is assigned a priority. The order of 
execution depends on this priority. The rule is very simple: 

The scheduler activates the thread that has the highest priority of all threads in 
the READY state. This means that every time a thread with higher priority than the 
active thread gets ready, it immediately becomes the active thread.  

 Priority Inversion 

In scheduling, priority inversion is a scenario where a low priority thread holds a 
shared resource that is required by a high priority thread. This causes the execution 
of the high priority thread to be blocked until the low priority thread has released 
the resource, effectively "inverting" the relative priorities of the two threads. If 
some other medium-priority thread attempts to run in the interim, it will take 
precedence over both the low priority thread and the high priority thread.  

In most cases, priority inversion can occur without causing immediate harm. The 
delayed execution of the high priority thread goes unnoticed, and eventually the 
low priority thread releases the shared resource. However, there are situations in 
which priority inversion can cause serious problems. If the high priority thread is 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 34 
 

left starved of the resources, it might lead to a system malfunction or the triggering 
of pre-defined corrective measures, such as a watch dog timer resetting the entire 
system. 

 

Priority inversion can also reduce the perceived performance of the system. Low 
priority threads have less precedence because it is unimportant for them to finish 
promptly. Similarly, a high priority thread has higher precedence because it is 
subject to strict time constraints. It may be providing data to an important process, 
or acting subject to real-time response guarantees. Because priority inversion 
results in the execution of the low priority thread blocking the high priority thread, 
it can lead to reduced system responsiveness, or even the violation of response 
time guarantees. 

 Thread Stacks 
Every thread needs its own stack and the size of this stack is defined when creating 
the thread. The minimum size of a thread stack depends on the application, 
compiler and optimization options. The stack is only used by the functions that are 
called from threads and interrupts that do not use the interrupt stack.  

Some Real Time Operating Systems use the stack to store the thread context on 
the stack and some will store the thread context in the Thread Control Block (TCB). 
The total memory requirements are the same. Q▪Kernel™ will store the thread 
context in the TCB and, for that reason, will not use any space on the thread stack. 
All space is available for the thread.  

The best way to determine the size is to start big, like 512 bytes. During the 
creation of the thread, the stack is initialized with all “ones”. The function 
qThrStack() returns the stack space in bytes. The developer can examine the stack 
space by comparing the stack pointer with the stack size during debugging. 

The size of the thread stack is influenced by the following: 

• Compiling with the code optimizer will significantly limit the stack 
requirements. If a compiler is used with a limited code optimizer, select the 
option that disables the frame pointer. 

• Interrupts Service Routines that don’t switch to the interrupt stack will 
increase the stack space because all threads must include stack space for the 
interrupt. Because of the dynamic nature of interrupts you don’t know which 
thread will be interrupted.  

• Q▪Kernel™ interrupt service routines (qISR() and qISR_FAST()) use the 
interrupt stack and only use a few bytes of the thread stack. 

Q▪Kernel eliminates priority inversion with 
its handling of mutexes. It implements the 
priority inheritance algorithm to eliminate 

priority inversions. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 35 
 

• Nesting interrupts add to the stack requirements. If there are seven levels 
then the worst case scenario is 40 bytes added on every thread stack. If no 
interrupt stack is used this number will be much higher. Thread stacks need 
to be increased by hundreds of bytes. 

Thread stacks are automatically allocated from the memory manager. The 
developer only has to define the size of the stack. The stack space is returned to 
the pool if the thread is closed.  

Some microprocessors12 have a facility to detect stack overflow. Q▪Kernel™ will 
control the stack for the system and will maintain the stack overflow register so 
the hardware can detect stack overflow.  

The library with parameter checking also checks stack overflow during every 
Q▪Kernel™ function call. This method can help the developer find stack overflow 
on processors without hardware stack detection. This method is not 100% bullet 
proof because stack-overflow can stop the application before a Q▪Kernel™ function 
has been called. 

 Shared Stack (PIC24E and dsPIC24E only) 

Q▪Kernel™ can use shared stacks on processors that support EDS like the PIC24F 
DA family, PIC24E and dsPIC24E. The stack can be shared because the content of 
the shared stack is saved and/or restored into EDS during a context switch. This 
may look like a very inefficient process but the memory bandwidth of the PIC24 
and dsPIC is so large and the optimization of the algorithm makes it very practical. 
The following table specifies the context switch times in cycles and time where the 
context switch is initiated by a wait for an object like waiting for a mutex, waiting 
for an event, etc. The numbers are based on a 70MIPS PIC24E and the Shared 
Stack is 250 bytes. 

  

Context switch initiate by waiting on object Cycles Time 

No shared stack at all 40 0.57 µSec 

Standard Stack  Standard Stack  46 0.66 µSec 

Standard Stack  Shared Stack where 
stack was in place 

46 0.66 µSec 

Standard stack  Shared Stack  313 4.47 µSec 

Shared Stack  Standard Stack  46 0.66 µSec 

Shared Stack  Shared Stack  313 4.47 µSec 

 

                                                   

 
12 The PIC24 and dsPIC have hardware stack limiting features. The PIC32 cannot detect stack-overflow in hardware. 
It is the user’s responsibility to allocate enough stack space. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 36 
 

The following table is based on a preemptive context switch where the switch is 
initiated by an interrupt. The numbers are based on a 70MIPS PIC24E and the 
Shared Stack is 250 bytes. 

 

Context switch initiate by interrupt Cycles Time 

No shared stack at all 40 0.57 µSec 

Standard Stack  Standard Stack  66 0.94 µSec 

Standard Stack  Shared Stack where stack was in place 66 0.94 µSec 

Standard stack  Shared Stack  333 4.51 µSec 

Shared Stack  Standard Stack  66 0.94 µSec 

Shared Stack  Shared Stack  333 4.51 µSec 

 

The tables show that switching to a thread with standard stack always takes the 
same amount of cycles. This has been built into the algorithm to guarantee short 
and fixed switching times for thread with standard stacks.  

Because Q▪Kernel™ never disables interrupts response times to interrupts are not 
affected. The rule of thumb is to use standard stack for high priority threads and 
use shared stacks for low priority threads. An ideal candidate for a shared stack is 
the TCP/IP driver. This thread will not be often activated and the TCP/IP protocol 
can handle long periods of in-activity that is much longer than the context switch 
to a shared thread. 

  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 37 
 

 Thread Creation 
The developer can create threads before and after the start of the kernel. It is 
possible to create all threads before the start of the system or just one and use 
that thread to start other threads on demand. Threads can be created active, in 
the ready state or suspended, in the wait state.  

See example below: 

 
Threads that are created before the system is started are not activated. After the 
start the thread with the highest priority will be executed. If a thread is created 
after the start of the system it will be created in the ready state and will be 
activated if it has the highest priority.  

The function pointer is the function to start for this thread. The extra parameter is 
the input for the function. The developer must define the parameter, but it is 
possible to cast it to another type. The example uses an integer with the value 4. 

The priority specifies the priority in scheduling. Lower values represent lower 
priority. The idle thread has priority 0. The priority can be between 1 and 250. First 
define the priorities as multiples of 10 so you can later add a thread in between 
the priorities without having to change the other ones. 

The open function returns a pointer to a Thread Control Block (TCB). This TCB can 
be used to in other functions to address the thread. This is very convenient because 
the pointer to the TCB can be local to the thread. The open function can also be 
used to see if a device driver is already running. 

The developer can create other threads using the same function, so effectively 
reusing the code. This is common practice when writing device drivers where the 
input is the device number. A UART driver uses the parameter to select device 1, 
2, 3 or 4. If the application needs 4 UART drivers, it creates 4 threads, but it loads 
the code only once.  

pTCB MainThread; 
int main() { 
    qKrnInit(4000000,64,256,4); // Init the kernel 
    MainThread = qThrCreate( 
                 "Main",   // The thread name = “Main” 
                 MainThr,  // Function pointer  
                 (void*)4, // Extra parameter 
                 64,       // Stack size 
                 120);     // Priority 
    qKrnStart();           // Start the kernel 
    return 0;              // Never returns here 
} 
 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 38 
 

The thread itself looks like this: 

 
 

If a high priority thread executes an endless loop lower threads are not scheduled. 
This could monopolize the processor and should be prevented. The thread should 
not poll but use Q▪Kernel™ mechanisms to synchronize itself with hardware or 
other threads.  

This could be one of the following functions; qEvtWait(), qMsgReceive(), 
qMsgSend(), qMtxLock(), qSemAcquire(), qThrSleep(), qThrEvtWait() and all open 
functions. These are all calls with a timeout and will bring the thread in the wait 
state. Threads with lower priority can run. 

 Thread Events 
A thread contains a set of events that can be manipulated by other threads and 
fibers. The thread can wait on any combination of event flags in one EventSet. 
Thread EventSets are groups of 16 or 32 binary flags13 that describe conditions. 
Threads can wait for those flags (conditions) to be set. For example, a thread waits 
for any of 6 conditions when it has to close a valve. Other threads or fibers can set 
one or more conditions.  

Thread EventSet complement the event objects. EventSet objects can be used by 
many threads and fibers and multiple threads can wait on these events. Use these 
events only if multiple threads need to wait on the EventSet, because Thread 
EventSets are faster and require less overhead. Another difference is that thread 
EventSets are always available for a thread, where event objects have to be 
created. 

The thread can wait on any combination of event flags in one EventSet. This is very 
flexible. The threads can also automatically clear the flags it’s waiting for. So the 
event wait options are: 

                                                   

 
13 This is dependent on the port. 16-bit systems like PIC24 and dsPIC provide 16 flags and 32-bit systems provide 
32 flags in one EventSet. 

void MainT(void *p) {// Must be void *p 
  int counter;       // Define local variables 
  int type; 
  // First execute some initialization code  
  counter = 100; 
  type = (INTU)p;   // Work with the startup parameter 
  … … …             // do some init work 
  while (counter) { // This can also an infinite loop 
    …               // Code that implements the thread 
                    // Waits should be included to  
                    // prevent an endless loop. 
  } 
  // If the threads ends here. It will close itself 
} 
 

 
 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 39 
 

• WAIT_TYPE_ALL means wait until all flags are set. This is also called the AND 
scenario. 

• WAIT_TYPE_ALL_CLEAR means wait until all flags are set and if this situation 
occurs reset the flags that the thread is waiting for. 

• WAIT_TYPE_ANY means wait until one of the flags is set. This is also called 
the OR scenario. 

• WAIT_TYPE_ANY_CLEAR means wait until one of the flags is set, and if this 
situation occurs, reset the flag(s) that triggered this operation. So not all flags 
that the thread was waiting for are reset. 

Signaling an EventSet is possible from an interrupt, fiber or thread. This contributes 
to the flexibility of the events sets. 

 Resuming a waiting or suspended thread 
Threads in the suspended or wait mode can be activated by the qThrResume() 
function. The thread can be in the following modes: 

• Suspend mode no object event. The thread can place itself in this mode with 
the qThrSuspend() function. It can be resumed by the function qThrResume() 
and the reason specified in the resume function will be returned to the 
suspend function. 

• Suspend mode with object event. The thread can place itself in this mode 
with the wait function like qEvtWait(), qSemAcquire(), qMsgReceive(), 
qMsgSend(), the qXxxOpen() functions, etc. The thread cannot be resumed 
by the function qThrResume().  

• Wait mode no object event. The thread can place itself in this mode with the 
qThrSleep() function. It can be resumed by the function qThrResume() and 
the reason specified in the resume function will be returned to the sleep 
function. 

• Wait mode with object event. The thread can place itself in this mode with 
the wait function like qEvtWaitTO(), qSemAcquireTO(), qMsgReceiveTO(), 
qMsgSendTO(), the qXxxOpenTO() functions, etc. The thread cannot be 
resumed by the function qThrResume(). 

 

The qThrSleep() and qThrSuspend() function return the reason why they are 
resumed or -1 when they are timed out. The reason can be used as a 
communication mechanism between the thread that activates the thread and the 
waiting thread.  

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 40 
 

7. Dual-Mode RTOS 
Convergent processors, like the dsPIC and PIC32, bring together MCU-type control 
with DSP or high dataflow functionality. 

The developer that uses a traditional RTOS to run DSP or high dataflow applications 
will run the threads as high priority threads, higher than the control threads. 
Because the operations are initiated from interrupts a lot of time is used to switch 
between threads. A traditional RTOS will use a large part of its CPU cycles just to 
switch between the threads. 

Q▪Kernel™ combines the traditional thread-based kernel architecture for real-time 
control processing with specialized fibers for DSP and high dataflow operations. 
The architecture accommodates the different needs for both domains, by 
separating them. Q▪Kernel™ enables both types of application code to run fully 
optimized on a single processor and both fibers and threads use a common API. 

Fibers will be used to accommodate the high data load or DSP functionality. The 
process is interrupt driven. The interrupt that drives the process should be 
implemented as level 2 or higher. The ISR can activate a fiber by using priority 
fibers, or if data exchange is required queued fibers can be used. The activation of 
the fiber is less time consuming then a full context switch and is significantly faster. 
The fiber will execute the algorithm on the data and can only be interrupted by 
interrupts. When all data is processed and cleaned-up, the information can be sent 
to threads by a pipe or a queue. 

It is essential to implement the data processing in fibers because they limit the 
overhead of thread switching. Multiple fibers can use the DSP engine because they 
are processed in serial according to priority sequence. It is preferred to use multiple 
fibers because starting a second fiber only requires a few cycles. 

An application that receives an interrupt every 100 µSec from an AD converter with 
a measured voltage is an example of a non DSP application. The fiber has to clean 
the data and then send the average of the measurements every 50 measurements 
to a thread. If the value is critical it has to send an alarm to another thread. Instead 
of waking up, the thread every 100 µSec, the fiber is doing all the work. The key 
here is that not every interrupt requires waking up the thread. If the fiber has to 
activate the thread in all cases a fiber is not very helpful.  

The other alternative, doing the work in the interrupt, is not good either because 
the interrupt will block all other interrupts that have the same or lower priority 
during processing.  

 Using the DSP Engine 
As explained above the DSP engine should only be used in fibers. Modulo and bit 
reversed addressing is allowed and Q▪Kernel™ supports this completely. The 
developer should activate the addressing mode at the beginning of the fiber and 
disable it at the end of the fiber. 

The native compiler interrupt syntax is DSP unaware. Use the functions 
qDspEnter() and qDspExit() to save and restore the addressing mode. The 
Q▪Kernel™ interrupt syntax (qISR() and qISR_FAST()) macros are DSP aware and 
fully automatic.  

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 41 
 

8. Memory and Memory Allocation 
When Q▪Kernel™ is initialized, it will take over the memory management. The 
following picture specifies the memory footprint before and after initializing 
Q▪Kernel™. The initial stack will be reused completely by Q▪Kernel™ to create 
allocate only heap memory. This memory is then converted on demand to variables 
and fixed memory pools. Q▪Kernel™ will implement malloc() and free() 
functionality through variable memory blocks.  

A compiler heap only need to be defined when the application wants to make use 
of the standard memory allocation mechanism. We do not recommend that 
because the standard memory allocation mechanism is not deterministic and not 
re-entrant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

  

Memory After qKrnInit() 

User Static 

Q▪Kernel 
Static 

Compiler heap 
(optional) 

Q▪Kernel 
Heap 

Memory 
 

DMA 
(optional) 

Q▪Kernel 
Variable 
Memory 

(ThreadStacks) 
(Int Stack) 

 

User Static 

Q▪Kernel 
Static 

Compiler heap 
(optional) 

DMA 
(optional) 

 

 

EDS  

(optional) 
 

 

Low 

High 

Low 

High 

More Memory used 

User Static 

Q▪Kernel 
Static 

Compiler heap 
(optional) 

Q▪Kernel 
Heap  

DMA 
(optional) 

Q▪Kernel 
Variable 
Memory 

 
(ThreadStacks) 

(Int Stack) 
(Objects) 

(Fixed Pools) 
 

Low 

High 

Memory Before qKrnInit() 

 

 

Initial 
Stack  

 

 

 

 

EDS  

(optional) 
 

 

 

 

EDS  

(optional) 
 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 42 
 

Q▪Kernel™ will only use a very small amount of static memory because it will 
allocate most of its memory requirements dynamically. User static variables will be 
allocated in User Static memory. Access to this kind of memory must be 
synchronized with critical sections or mutexes. The DMA and compiler heap are 
optional.  

 

 
The size of the heap can be specified in the project properties and should be zero. 
See the picture below. 

  

 
 

 Memory Allocation 
Memory allocation is even more critical in an RTOS than in other operating systems.  

• Firstly, speed of allocation is important. A standard memory allocation 
scheme scans a linked list of indeterminate length to find a suitable free 
memory block; however, this is unacceptable as memory allocation has to 
occur in a fixed time in real-time applications. 

• Secondly, memory can become fragmented as free regions become separated 
by regions that are in use. This is called external fragmentation and can cause 
a program to stall, unable to get memory, even though there is theoretically 
enough available. Memory allocation algorithms that slowly accumulate 
fragmentation may work fine for desktop machines, when rebooted every 
month or so, but are unacceptable for embedded systems that often run for 
years without rebooting. 

• Thirdly, memory allocation needs to be reentrant. 

Most Real Time Operating Systems provide the developer with a simple fixed-size-
blocks memory allocation algorithm. This works well but is not very flexible because 

Q▪Kernel will manage memory very 
efficiently. 

Specify the heap 
size as 0 (or leave 
it blank) if the 
conventional heap 
is not used. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 43 
 

the developer needs to know in advance the memory requirements, including size, 
and it generates a lot of work. 

 Memory types 
Q▪Kernel™ implements four different memory mechanisms, "Allocate Only" Heap, 
Variable Memory Block, Fixed Memory Blocks and thread aware conventional heap. 
All types have their own properties. 

• The “Allocate only” heap is fast but memory can’t be returned to the pool so 
it is inflexible. 

• Fixed Memory Blocks are fast but memory has a fixed size and has to be 
defined before they can be used. Fixed memory blocks can be accessed by 
interrupts. 

• Variable Memory Blocks are unique to Q▪Kernel™. They provide flexibility, are 
fast and reasonably deterministic.  

• Conventional heap. 

 “Allocate only” Heap 

In embedded systems, many blocks are permanently allocated at startup. The heap 
works well because each block can be exactly the right size. Fragmentation is not 
a problem because these blocks are never released. The used algorithm is fast and 
deterministic.  

 Variable Memory Blocks 

The Variable Memory Block algorithm manages memory of any size by creating 
memory pools for equivalent sizes. When memory is allocated it first tries to find 
the memory in the correct memory pool. If there is a pool available it will simply 
allocate it from the head of the list. If there is no pool available it will create a pool 
on the fly. If there is a pool available but there is no block in the pool the block is 
allocated from the heap. Memory that is de-allocated (freed) will be returned to 
the pool it was allocated from. 

Memory is allocated in multiplies of 8 bytes. So if a memory block of 44 bytes is 
required Q▪Kernel™ will allocate 48 bytes even if it intends to use only 44 bytes. 
This is called internal fragmentation. The term "internal" refers to the fact that the 
unusable storage is inside the allocated region. 

Memory can be accessed by size or pool. Allocation by pool is significant faster 
because Q▪Kernel™ does not have to search for the pool. Memory allocation is 
100% deterministic, so there is no difference between the allocation time of the 
first and last block. The access time is 12 cycles for the 16 bit implementation. 

Q▪Kernel™ uses Variable Memory Blocks14 for all its internal operations and this 
gives Q▪Kernel™ the ability to dispose memory that’s not used anymore. This 
makes the system much more dynamic. Threads and services can be created and 

                                                   

 
14 Q▪Kernel uses the same variable memory blocks as the application with one exception. The size of the block is 
exact the size of the required memory and not a multiply of 8. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 44 
 

closed on the fly and all resources will be returned to the pool. This reduces the 
memory footprint.  

It is better to use fixed memory blocks if the exact size and the number of blocks 
are known. Fixed memory blocks don’t have to be a multiple of 8. 

The standard heap functions malloc(), free(), calloc() and realloc() are 
implemented by Q▪Kernel™ as variable memory but reside in the heap library. The 
user must include that library in the project to provide this functionality. If that 
library is not used, the system will use the C30-library and will use the conventional 
heap.  

 

 Fixed Memory Blocks 

Q▪Kernel™ provides the traditional fixed-size-blocks memory allocation algorithm. 
Since the blocks are fixed-size, no fragmentation will occur  

Fixed Memory Blocks must be created before they can be used and they can’t be 
changed after creation. The create function allocates the whole fixed pool with all 
its blocks as one big Variable Memory Block. It returns the Fixed Memory Pool 
address and this pool is used to allocate and free the Fixed Memory Blocks. The 
close function will de-allocate the whole pool and returns it to the Variable Memory 
Pool. It is the developers’ responsibility to verify that no blocks are in use. Fixed 
memory blocks can be accessed from threads, fibers and interrupts because 
allocation and de-allocation operate completely atomic. Messages created with 
Fixed Memory Blocks can also be allocated in interrupts. Lack of flexibility is the 
main drawback of fixed-size memory pools. 

Memory allocation is not 100% deterministic but very close. The allocation time for 
the first block is 22 cycles and the 256th block takes 38 cycles for the 16 bit 
implementation.  

 

 Conventional C Runtime Heap 

The conventional C runtime heap or compiler heap implements dynamic memory 
allocation based on the compiler library function. Those functions are not thread 
aware, not deterministic, and can cause external fragmentation. External 
fragmentation is the phenomenon in which free storage becomes divided into many 
small pieces over time. Because they are not thread aware they can only be used 
by one thread. The size of the heap must be specified in the build options in MPLAB. 

The Kernel provides a thread safe malloc() 
and free() out of the box 

 

Fixed Memory Blocks are accessible from 
interrupts. 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 45 
 

We advise to use the malloc() and free() functions implemented in the Q▪Kernel™ 
heap library. They are fully thread aware and deterministic.  

 

 Choosing Type of Memory 
The following guidelines can help the developer to choose a memory type. They 
are in sequence of importance. 

1. Always use the Q▪Kernel™ heap for allocate only memory. It is fast and 
there is no internal or external fragmentation.  

2. Use fixed memory blocks if memory is allocated and freed from ISRs or if 
the size and number of items is known. Fixed memory blocks don’t have 
internal fragmentation and access is fast.  

3. Use variable memory blocks only if the rules above don’t apply. Variable 
memory blocks have internal fragmentation but are fully deterministic. 

4. If there is still not enough memory available and EDS is available free-up 
memory by using the shared stacks for low priority threads.  

5. Use the conventional heap only if variable memory does not provide a good 
result. The conventional heap is able to split up large memory blocks in 
multiple smaller blocks.  

The first three rules are simple. In most cases variable memory works very well 
but there are cases where the conventional heap works better. One of the 
weaknesses of the variable memory blocks is that allocated memory of a certain 
size will never be re-used if there is no other request in that range. The 
conventional heap will re-use that, but this also means that it will not be 
deterministic and external fragmentation is introduced.  

The best way to handle memory allocation is to start with variable memory and 
see if that works. This is the best situation in 99% of the cases. If this does not 
work, look at how much memory is allocated in pools that are not used anymore. 
Then see if it is possible to solve that. If that does not work, use the conventional 
heap. It is possible to use the conventional heap and the variable memory pool, 
side by side. Just keep in mind, the conventional heap may work fine in the 
beginning but could fail later because of external fragmentation from the 
conventional heap. 

 Using malloc(), free() and realloc() 
There are two options to implement malloc(), free() and realloc(). Use variable 
memory or use the conventional heap. To use malloc(), free() and realloc() with 
the conventional heap you just have to specify the heap size as described 
previously. To use malloc(), free() and realloc() with variable memory blocks 
include the file qMalloc.c in your project. This file contains the code to use the 
variable memory blocks from malloc(), free() and realloc(). 

The conventional C heap is not reentrant 
and deterministic and can cause external 

fragmentation 
 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 46 
 

 Allocation and De-Allocation Speed 
The following table describes the operation and the speed of the operation: 

Operation on memory Speed15 How flexible? 

Allocate from Heap 12 No free option 

Allocate Fixed Memory Block 22+(N/8) Fixed blocks must be created. 
They are very deterministic and 
depends on N16 an interrupts. Free Fixed Memory Block 7 

Allocate Variable Memory 
Blocks by pool 

12 or 2017 100% deterministic if allocated 
by pool  

Very flexible and reasonably 
deterministic if allocated by size. 
This depends on N18 (number of 
pools in use) 

 

Allocate variable memory block 
by size 

29 to 
38+2*N  

Free variable memory block 10 

 

The developer has the ability to control the memory environment completely. It is 
possible to populate Variable Memory Pools to the required size so they can be 
allocated with the pool address. This gives a 12 cycle allocate speed and a 10 cycle 
de-allocate speed. 

Under normal circumstance the Variable Memory Blocks gives the best combination 
of flexibility, performance and is reasonably determinist. We advise to use Variable 
Memory Blocks and only change this if the application makes it necessary. 

If you know that the memory is never freed, use the heap. It is the fastest memory 
allocation algorithm. 

                                                   

 
15 The number is the number of cycles from the start of the function including 3 cycles for the return statement. This 
is the exact number of cycles for the 16 bit version and a relative number for the 32 bit version. 
16 Fixed memory blocks can be used from interrupts and it is possible that an existing request is interrupted by 
another request. There is a possibility that the interrupted request must retry. The first block takes 22 cycles and 
the 32nd block takes 22 + (32/8) = 26 cycles. The Free operation is always deterministic. 
17 If there is no block in the pool the block will be allocated from the heap. The developer can create enough memory 
blocks during initialization to guarantee that the heap is never used. That gives a fixed 12 cycle allocation time. The 
Free operation is always deterministic. 
18 The N is for the number of pools in use. The mechanism first has to find the correct pool based on the size and if 
it does not exist it has to allocate it from the heap. So if there are 10 pools the allocation speed is 29 to 58 cycles 
and the free operation is a fixed 10 cycles. 

Q▪Kernel memory allocation is fast and 
simple. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 47 
 

 

 Memory Functions 

Function Description 

qFixAlloc() Allocates a memory block from a fixed memory pool 
and returns a pointer to the memory. 

qFixAllocClr() Allocates a memory block from a fixed memory pool, 
clears it and returns a pointer to the memory. 

qFixCreate() Creates a Fixed Memory Pool and initializes its internal 
structure. Returns a pointer to the pool. 

qFixClose() Closes a Fixed Memory Pool and returns the memory to 
the Variable Memory Pool. 

qFixFree() De-allocate a fixed memory block and returns it to the 
pool. 

qHeapAlloc() Allocate memory from the heap. 

qHeapSize() Return the size of the heap.  

qMemAlloc() Allocate a memory block based on size. 

qMemAllocClr() Allocate a memory block based on size and clears the 
memory. 

qMemAllocFast() Allocate a memory block based on the pool. 

qMemAllocFastClr() Allocate a memory block based on the pool and clears 
the memory. 

qMemFree() De-allocate a memory block and returns it to its pool. 

qMemPool() 
Returns the pointer to a memory pool based on the 
size. If a pool with that size does not exist the function 
creates the pool. 

qMemPoolAdd() Add memory blocks to a memory pool. The memory is 
allocated from the heap. 

qMemPoolNext() Get from an existing memory pool the next memory 
pool.  

qMemPoolSize() Get the size of memory block from a memory pool. 

 

  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 48 
 

 Example Memory Allocation 
The following example creates a memory pool and allocates a memory block by 
pool and by size: 

 
As shown in the example, data1 is allocated by size. A pool for that size is 
automatically created. The function qMemPool() will return a pointer to that pool. 
If a pool for that size did not exist it would be created. Then another memory block 
(data2) is allocated with the fast method. This is completely deterministic and very 
fast. The last two statements free the allocated memory. It is irrelevant how the 
memory was created, by block or by size. 

The next example shows how to create fixed memory blocks in a thread and 
allocates and de-allocates the block in an ISR.  

 

typedef struct { 
  int Count; 
  long total; 
  char insert[10]; 
} mydata; 
 
void foo(){ 
  mydata data1,data2;// define the structure 
  pMPL mpl;          // define pointer to the pool 
  pMPL mpl=qMemPool(sizeof(mydata));  
                     // Create pool required for … 
                     // …fast allocation by pool 
  data1=qMemAlloc(sizeof(mydata)); 
                     // allocate block by size 
  data2=qMemAllocFast(mpl);  
                     // allocate block by pool 
  qMemFree(data1);   // free the memory 
  qMemFree(data2);   // free the memory 
};  

pFIX fix;            // define pointer to the pool 
 
void foo(){ 
  fix = qFixCreate(sizeof(mydata), 50);  
};                   // Create pool with 50 blocks 
 
// The ISR 
qISR(_T2Interrupt) {          // 16-bit PIC example 
  mydata data=qFixAlloc(fix); // Allocate memory 
  ………                         // Do work 
  qFixFree(data);             // free the memory 
}  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 49 
 

9. Power Management 
Strategies to reduce power can be particularly useful in applications that are both 
power-constrained (such as battery operation), yet require periods of full-power 
operation for timing-sensitive routines, such as serial communications, AD 
conversions, etc. Q▪Kernel™ delivers industry leading power management due to 
its Tick-Less operation and its flexible implementation. 

Limiting power consumptions can be approached by limiting the clock frequency of 
the processor or by stopping the processor and switching to a low power mode 
when idle. Limiting the clock frequency is not as effective as switching to a low 
power mode when idle because most modern processors consume more power per 
cycle at a lower clock frequency. The most effective way to limit power 
consumption is to work at the maximum operating frequency and put the processor 
in sleep mode when idle. This requires an interrupt driven application without 
polling. Most competing products are not Tick-Less so the power savings are limited 
because the processor must poll19 every 100 µSec to 1 mSec to process its tick. 

 

 
 

Q▪Kernel™ can help20 the developer to find when the system has processed all 
interrupts, fibers and threads and becomes idle and manage power. 

Most MCU can operate in at least 3 power modes21: 

• Normal mode means the processor runs at full speed and power consumption 
is at a maximum. 

• Idle mode stops the processor completely but keeps the device clock going. 
While this mode is using more power than sleep mode, it can be a very good 
alternative because it gives the user a lot of control like disabling some of the 
hardware devices based on requirements. 

• Sleep mode stops the processor completely and stops most of the devices. 
This mode consumes the least power of all power modes. 

 

                                                   

 
19 Some systems disable the tick. While that limits the power consumption, it prevents timing and delays and involves 
the implementation of manual processes that need to be developed. Q▪Kernel provides all functionality "out of the 
box". 
20 Can help is an understatement. It is difficult to effectively switch to a low power without an RTOS like Q▪Kernel. 
21 The deep-sleep mode of some processors is not supported. This mode is for very small applications that have very 
low wake-up requirements and operate with limited amounts of RAM. 

Q▪Kernel is Tick-Less and provides the best 
power management.  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 50 
 

Q▪Kernel™ is not only optimized to find the moment the system is completely idle 
but also detects if there are no future outstanding activation requests that would 
be influenced by the power mode. The system also guarantees that the power 
mode will not switch when an interrupt is ready to be processed. This could cause 
a race condition and would prevent the interrupt from being processed in time. 

 

The power mode is controlled by permitting or preventing Idle or Sleep modes. The 
functions qPwrPermitIdle(), qPwrPermitSleep(), qPwrPreventIdle() and      
qPwrPermitIdle() control this. 

 

 

 Interrupt Response Time in Low Power Mode 
The interrupt response time provided by the processor is related to the power 
mode. In normal power mode the interrupt response time is a few cycles. In idle 
and sleep mode there is a wake-up delay that can delay the interrupt response 
significantly. Please refer to the processor data sheet for the specific wake-up delay 
times. 

 

Q▪Kernel power management is simple.  

Q▪Kernel prevents race conditions between 
interrupts and power mode switching.  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 51 
 

10. Statistic Services 
Q▪Kernel™ provides statistic services and thread switching can be tracked by using 
the switch notification function. Statistics are more useful over time. 

 Switch Notification 
Switch notification can be enabled with the functions qKrnSwitchNotificationOn() 
and disabled with the off variant. If switch notification is on, the system will call 
qNtfSwitch(). The two arguments are the current thread and the next to run thread. 
The developer can write code to solve difficult to find issues. Because the 
notification function is a normal function, running as a fiber the developer can code 
extensive tracking mechanisms for debugging purposes. This type of tracking is 
intrusive.   

 

This functionality can also be used to make variables thread aware.  

 Statistics 
Q▪Kernel™ provides the developer of an application with thread and fiber statistics. 
The service will measure the total number of cycles used by every thread, individual 
and for the fibers combined. This information is used to calculate how much CPU 
time is used by every thread, individually and fibers in total.  

The developer has to configure statistics and the gathering of statistics starts with 
the execution of qKrnStatOn(). The algorithm used does not use much CPU time 
itself and the statistics are very accurate. Inaccuracy is introduced by interrupts22 
and closing a thread23.  

Statistics are gathered in the core of the kernel during thread switches and fiber 
activation and adds about 100 cycles to context switches and fiber activation.  

 

Switch Notification Function Description 

qKrnSwitchNotificationOn() Enables switch notification 

qKrnSwitchNotificationOff() Disables switch notification 

qKrnNtfSwitch() Function provided by developer and called 
from the scheduler during a thread switch. 

                                                   

 
22 Time spend in interrupts is counted to the tread or fiber that was interrupted. This is no problem because interrupts 
are very light and don’t use much CPU-time. The design philosophy of Q▪Kernel is to keep interrupts as short as 
possible and do the bulk of the work in fibers. 
23 If a thread is closed within a measuring period the time spend by the thread is counted as it was spend by the 
fibers. 

Switch Notification is intrusive. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 52 
 

 

Statistic Function Description 

qFbrStatCycles() Returns the total number of cycles since the start 
of the statistic gathering for fibers and scheduler. 

qKrnStatOff() Ends statistic gathering. 

qKrnStatOn() Starts statistic gathering. 

qThrStatCycles() Returns the total number of cycles since the start 
of the statistic gathering for the specified thread. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 53 
 

11. Services and Objects 
Services are available for communication, synchronization, memory management, 
threads and fibers. 

Almost every service uses an object to identify the service and to communicate 
with the service. The objects have a structure that is partly available for the 
application but are mostly used internally by Q▪Kernel™.  

The different object types are listed below with their data type and prefix. 

Services Structure Pointer to 
Structure Functions 

Critical Sections None None qCrt………() 

EventSets EVT pEVT qEvt………() 

Errors ERR pERR qErr………() 

Fibers None None qFbr………() 

Managed Messages MSG pMSG qMsg………() 

Variable Memory (pools and items) MPL pMPL qMem………() 

Fixed Memory (pools and items) FPL pFPL qFix………() 

Mutexes MTX pMTX qMtx………() 

Pipes PIP pPIP qPip………() 

Queues QUE pQUE qQue………() 

Semaphore SEM pSEM qSem………() 

Threads TCB pTCB qThr………() 

Timers TMR pTMR qTmr………() 

 

All objects are type safe. This means that errors are found at compile time instead 
of run-time, which saves development time. Type safe objects do not degrade 
performance. Q▪Kernel™ still checks the validity of the object to prevent the use of 
the object when it is in an invalid state.  

 

Q▪Kernel objects are type save which will 
shorten development time. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 54 
 

 Dynamic Object Management and Naming 
Most service objects24 need to be created before they can be used. Q▪Kernel™ 
handles object dynamically so they can be returned to the pool. 

The dynamic resource creation has a number of important benefits. It allows the 
developer to save resources, mainly RAM, because threads or other objects can be 
closed and resources are returned to the resource pool. 

Multiple threads, fibers and interrupts use the same objects. One thread will use a 
queue to send messages and another thread will read that message from the same 
queue so they must use the same object. Traditional products store the object 
pointer in a global variable. This means that the developer has to synchronize the 
use and the creation of the object. Q▪Kernel™ solves this problem by supplying a 
"Create" and an "Open" function. The "Open" function waits until the object is 
created. We advise the use of local variables (type save pointers) to store the 
object (pointer).  

 

During creation, the object can be given an optional25 name. Other threads or fibers 
can find the object by using its name. The following resource objects implement 
open services. 

• EventSets  (qEvtCreate() and qEvtOpen()) 

• Memory Pools26 (qMemPool()) 

• Mutexes  (qMtxCreate() and qMtxOpen()) 

• Pipes  (qPipCreate() and qPipOpen()) 

• Queues  (qQueCreate() and qQueOpen()) 

• Semaphore  (qSemCreate() and qSemOpen()) 

• Threads  (qThrCreate() and qThrOpen()) 

• Timers  (qTmrCreate() and qTmrOpen()) 

 

                                                   

 
24 Critical Sections and fibers are exceptions because the administration is maintained within Q▪Kernel and they are 
always available so the developer does not have to create them and open and close functions are not required.  
25 Objects that are not named cannot be opened by another user of that object. Shared objects should always be 
named. Q▪Kernel open functions use the name to find the object. The developer can use the constant qNO_NAME for 
readability reasons. 
26 Memory pools are not identified by their name but by the size of the blocks in the pool.  

The ability to search for an object and 
synchronize it with the create ones 

prevents global variables and simplifies 
development. 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 55 
 

The following functions are available: 

• The qXxxCreate() function allocates the resource and returns a type save 
pointer to the caller. Before the function returns, it will ready threads that are 
waiting on the creation of the resource, so it is possible that the thread will 
be pre-empted.  

• The qXxxOpen() function finds existing resources and returns a pointer to the 
object or waits for another thread to create the object. This way the pointers 
to those blocks can be local to the thread or fiber. The open requires the 
name of the resource to find the resource. The name can be defined as a 
constant string or a literal. 

• The qXxxOpenNB() function tries to find an existing resource and returns a 
pointer to the object if it exists. If the resource does not exist, it will not block 
but will return a null pointer. 

• The qXxxOpenTO() functions as qXxxOpen() but will limit the wait time. If 
the resource is not available within the wait time, it will return a null pointer. 

• The qXxxClose() function returns the resources back to resource pool. The 
object cannot be used anymore and will be invalidated. This guarantees that 
the object cannot be used by accident.  

The following example specifies how to synchronize the creation of a semaphore 
between two threads. The main thread creates the queue  

 

 
 

  

void myThr(void *p) {    // Thread  
  pQUE pQue;             // Local variable 
  pQue=qQueOpen("myQue𝟏𝟏");// Get a pointer and wait 
                         // until the queue is created 
  … …                    // Do work with it 
} 
 
void mainThr(void *p) {  // Thread to create queue 
  pQUE myQue1;           // Local variable 
  pQUE myQue2;           // Local variable 
  myQue1 = qQueCreate("myQue1",𝟐𝟐𝟐𝟐); 
                         // Create a queue 
  myQue2 = qQueCreate("myQue2",𝟏𝟏𝟏𝟏); 
                         // Create a second queue 
  … …                    // Do work 
} 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 56 
 

 Time-Out and Blocking Functions 
All functions that communicate with services that have the ability to wait until a 
resource is available come in 3 variants:  

• The Standard functions, like qSemAcquire(), will wait until the resource is 
available. It does not matter how long that will take. The thread can only 
be activated by another thread or fiber. This type can only be used by 
threads, because it requires state. Because this type does not time-out it 
does not use the wait-timer or RTCC which can minimize power use. 

• The Non-Block functions, like qSemAcquireNB(), will always return 
immediately with two possible outcomes. The resource is acquired and the 
function returns success or the resource is not available and the function 
does not return success. This type can be used by threads or fibers.  

• The Time-Out functions, like qSemAcquireTO(), will return if the resource 
becomes available or times out, if the resource is not available within the 
timeout time. This type can only be used by threads, because it requires 
state. This type can use the wait-timer or RTCC depending on the time 
specified. A negative value will use the real-time clock. There are some 
examples below. 

 

The first two examples specify a timeout of 10 seconds. The first one uses the real-
time clock and the second and third example specifies the delay in µSec.  

 Error Handling 
Q▪Kernel™ provides centralized error handling. All errors are defined as fatal errors, 
in which the application can’t continue. When a function returns the developer 
knows that the operation ended successfully27. Centralized error handling 
minimizes code complexity. These kinds of errors are often coding errors or the 
system reaches limitations and can't continue. It is not necessary to test the result 
of a function.  

                                                   

 
27 The term successful means that Q▪Kernel did not find any condition that it cannot continue. A function which times 
out is in most cases not successful but Q▪Kernel defines the outcome as a success because a timeout is a valid 
outcome of a wait.  

qSemAcquireTO(pSem, -10); 
                // Acquire the semaphore and timeout 
                // after 10 Sec Use RTCC 
qSemAcquireTO(pSem, 10000000); 
                // Acquire the semaphore and timeout 
                // after 10 seconds Use wait Timer 
qSemAcquireTO(pSem, 50); 
                // Acquire the semaphore and timeout 
                // after 50 microseconds  
 
 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 57 
 

All Q▪Kernel™ errors have a unique code and this code identifies exactly what’s 
wrong. All errors are documented in the reference guide. Some of the optimized 
builds limit error checking for performance and size reasons.  

Traps like address errors, stack overflow etc. are also detected by Q▪Kernel™. 
Those errors are port specific but are signaled by the same notification function. 

 Application Errors 

The Q▪Kernel™ error handling mechanism can be used by the developer to throw 
application errors. Errors from 0x0001 to 0x0FFF are reserved for application errors 
and can be handled the same way as Q▪Kernel™ errors. The developer has to call 
qNtfError(MY_ERROR) to throw the error and use the Q▪Kernel™ mechanisms. 

 Notification of Errors 

Every time an error occurs, the function qErrNotify() is called. The developer must 
provide the qErrNotify () function. The most common and minimal function is listed 
below but the developer can easily extend the functionality. Caution is required 
because the system can be in an unknown state. The function checks if there is an 
error and if that is the case it will call qKrnError() to reset the system. The error 
can be logged after the reset and qKrnInit()28. 

 

 
 

A simple breakpoint can be set on the entry of the notification function for 
debugging purposes. 

The developer can also use this mechanism for its own error handling. This creates 
complete centralized error handling and only one error logging mechanism needs 
to be implemented. Also  

 Logging of Errors 

Most applications require the logging of errors in some kind of non-volatile memory 
like flash. This would make it easier to find problems because more information is 
available. The problem is that the system is not in a stable state when the error is 
notified and it might be impossible to log the error. The solution for this problem 
is to call qKrnError() which logs errors in persistent29 memory and then resets the 
processor. The error information is available after the initialization phase of 
Q▪Kernel™.  

                                                   

 
28 See for an example the Blinky.c 
29 The term persistent means that the memory is not overwritten by the initialization code after a reset.  

INTU qErrNotify(INTU err) { // The function 
    if (err==0) return err; // if no error return it 
    qKrnError(err);         // call the kernel error … 
    return err;             // … so it is logged in … 
};                          // … persistent RAM 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 58 
 

The error information is available in the structure qsERR and contains the following 
information: 

• ErrorNbr This number specifies the type of error. The number has the 
following ranges: 

o Errors below 0x1000 are application errors and the developer is 
responsible for those errors. 

o Errors between 0x1000 and 0x1FFF are documented in the 
reference manual.  

o Errors between 0x2000 and 0x2FFF are port specific errors and are 
documented in this guide at the port information. 

• StackType This value specifies if the interrupt stack is in use (1) or if a 
thread stack is in use (0).  

• TrapAddress This value specifies at which address (PC) the trap occurred. 
This is always a 32-bit address. 

• Zone This number indicates in which zone the error occurred. 

o Zero means that the error occurred in a thread. 

o One means that the error occurred in a fiber or in the Q▪Kernel™ 
scheduler. 

o Two and higher means that the error occurred in an interrupt 
handler and the number specifies the interrupt level. 

• pThread This pointer specifies the current thread. If the zone is zero then 
this thread initiated the error. If the zone is not zero this is the interrupted 
thread. 

• UpTime This value specifies the number of seconds the system was up 
before the error occurred. 

Other information is port specific and is described in the port specific chapters. 

Q▪Kernel™ will make a copy of the last error information during the initialization 
qKrnInit() and returns that. This will make it possible to log the information after 
the error occurred when the system is stable.  

 

 Error Handling Example 

The following code snippet saves the pointer to the error information and creates 
a special logging thread to log the error. If the error is logged the thread will 
remove itself from the system and returns the resources to the resource pool. 

 

Q▪Kernel provides the most complete and 
the best error handling in the business 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 59 
 

 
  

int main(void) {           // main entry point 
  pERR err = qKrnInit(……); // Initialize Q-Kernel 
  if (err)                 // If err start logging 
    qThrCreate(0,logThr,err,256,10); 
  qThrCreate(0,mainThr,0,256,5); 
  qKrnStart();             // Start Q-Kernel 
} 
 
 
void logThr(void *p) { 
  pERR err = (pERR)p;    // save the pointer to error 
  … … …                  // Log the error  
}                        // Exit will close the thread 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 60 
 

 Structures, Unions and Data Types 
One of the goals of Q▪Kernel™ is to let the compiler do as much checking as 
possible. Structures will accomplish this and make it difficult to mix data types. 
The compiler will flag an error. 

 Common Structures, Unions and Defines 

There are a number of structure definitions30 in qKernel.h file that can be used to 
simplify programming and improve compatibility between the different versions of 
Q▪Kernel™. 

 

Structure 
Union Explanation 

VER Version information 

DATETIME Union specifying a bcd date-time.  

INT16U Union to separate bytes in a 16 bit unsigned integer 

INT32U Union to separate bytes and 16 bit unsigned integers in a 32 bit 
unsigned integer 

INT64U Union to separate bytes, 16 bit unsigned integers and 32 bit 
unsigned integers in a 64 bit integer 

 

 

See the version structure below: 

 
 

  

                                                   

 
30 The Q▪Kernel objects are also structure definitions but are discussed later in this document.  

typedef struct sVER {  // Example 3.0-1389 
  uint8_t major;       // Major build number 3 
  uint8_t minor;       // Minor build number 0 
  uint16_t build;      // Build number ios 1389 
} VER; 
typedef const VER* pVER; 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 61 
 

DateTime example: 

 
 

UINT64 example. The UINT32 and UINT16 are similair 

 
 

 

typedef struct sDATETIME { 
  uint8_t year;     // BCD codification 0x00->0x99 
  uint8_t rsvd;     // Reserved for future use  
  uint8_t mday;     // BCD codification 0x01->0x31 
  uint8_t mon;      // BCD codification 0x01->0x12 
  uint8_t hour;     // BCD codification 0x00->0x23 
  uint8_t wday;     // BCD codification 0x00->0x06 
  uint8_t min;      // BCD codification 0x00->0x59 
  uint8_t sec;      // BCD codification 0x00->0x59 
} DATETIME; 
typedef DATETIME* pDATETIME; 

typedef union uINT64U { 
  uint8_t  uint8_0;   // Byte access (LSB) 
  uint8_t  uint8_1;   // Byte access 
  uint8_t  uint8_2;   // Byte access 
  uint8_t  uint8_3;   // Byte access 
  uint8_t  uint8_4;   // Byte access 
  uint8_t  uint8_5;   // Byte access 
  uint8_t  uint8_6;   // Byte access 
  uint8_t  uint8_7;   // Byte access (MSB) 
  uint16_t uint16_0;  // 16 bits access (LSHW) 
  uint16_t uint16_1;  // 16 bits access 
  uint16_t uint16_2;  // 16 bits access 
  uint16_t uint16_3;  // 16 bits access (MSHW) 
  uint32_t uint32_0;  // 32 bits access (LSW) 
  uint32_t uint32_1;  // 32 bits access (MSW) 
  uint64_t uint64;    // 64 bits access 
} UINT64; 
typedef UINT64* pUINT64; 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 62 
 

12. Critical Sections Services 
Q▪Kernel™ defines a critical section as a piece of code that accesses a shared 
resource (data structure or device) that must not be concurrently accessed by more 
than one thread or fiber. Some synchronization mechanism is required at the entry 
and exit of the critical section to ensure exclusive use. 

The Q▪Kernel™ implementation of a critical section suspended thread switching and 
fiber activation. This is an effective low cost way of implementing a critical section. 
It takes 1 cycle to disable the thread switch and it will take a few cycles to resume 
thread switching, including testing to see if a thread switch request was queued. If 
a thread switch request was queued it will be executed immediately after the 
critical section ended. Simple defines are available to implement this behavior. 

 

Another method to implement a critical section is a mutex. Mutexes are slower 
than critical sections but only suspend the thread that wants to access the critical 
resource. Critical sections block all threads switching but are much faster. For this 
reason critical sections should be kept as short as possible.  

 

It is not necessary to use critical sections within fibers because fibers can never be 
interrupted by threads. It is as if fibers always run within a critical section.  

Critical sections can be nested up to thousands of levels. The developer only has 
to keep track that every qCrtEnter() has a qCrtExit() in all flows. 

 Critical Sections and Interrupts 
As stated above critical section cannot be used to share data between ISR’s and 
other parts of the system. Most Real Time Operating Systems use critical sections 
that disable interrupts for synchronization. Q▪Kernel™ implements the “Segmented 
Interrupt” architecture to prevent disabling of interrupts. The synchronization can 
be done in any fiber type but most commonly used is the queued fiber because it 
allows data exchange. 

 

qCrtEnter();            // Enter the critical section 
if (GlobalData-- == 4)  // Do work with global data 
    GlobalData = 100;   // Do more work 
qCrtExit();             // Exit the critical section 

Critical Sections should not run longer than 
a few hundred µSeconds. 

Critical Sections cannot be used to protect 
data that must be shared with Interrupt 

Service Routines 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 63 
 

13. EventSet Services 
Threads and fibers can use EventSet objects in a number of situations to notify a 
waiting thread about the occurrence of mix of events. EventSets are groups of 16 
or 32 binary flags that describe conditions. Threads can wait for those flags 
(conditions) to be set. For example, a thread waits for any of 6 conditions when it 
has to close a valve. Other threads or fibers can set one or more conditions.  

EventSet complements the event features of threads. Thread events belong to the 
thread and only that thread can wait on the thread. Multiple threads can wait on 
these events. Use these events only if multiple threads need to wait on the 
EventSet, because thread EventSets are faster and require less overhead. 

A thread uses the qEvtCreate() function to create an EventSet object. The creating 
thread specifies the initial state of the flags and also specifies a name for the event 
object. Threads can open an existing EventSet object or wait for an EventSet object 
by specifying its name in a call to the qEvtOpen() function.  

Multiple threads can wait on any combination of event flags in one events set. This 
is very flexible. The threads can also automatically clear the flags it’s waiting for. 
So the event wait options are: 

• WAIT_TYPE_ALL means wait until all flags are set. This is also called the AND 
scenario. 

• WAIT_TYPE _ALL_CLEAR means wait until all flags are set and if this situation 
occurs reset the flags that the thread is waiting for. 

• WAIT_TYPE _ANY means wait until one of the flags is set. This is also called 
the OR scenario. 

• WAIT_TYPE _ANY_CLEAR means wait until one of the flags is set and if this 
situation occurs reset the flag(s) that triggered this operation. So not all flags 
that the thread was waiting for are reset. 

When a thread signals an events set, any number of waiting threads that specify 
the same event object in one of the wait functions, can be released. If more than 
one thread is released, the thread with the highest priority is selected to run.  

The implemented signaling algorithm allows multiple threads to wait with the clear 
option. This is a significant difference with competing products because they clear 
flags during the signaling process and that makes signaling unpredictable for other 
threads or limits the functionality. 

Fibers can also be used with EventSet services. They can use all functions with the 
exception of wait type functions. 

Signaling an EventSet is possible from an interrupt, fiber or thread. This contributes 
to the flexibility of the events sets. 

 

 

Events can be signaled from Interrupt 
Service Routines (ISR) 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 64 
 

 EventSet Functions 

Function Description 

qEvtClear() Clear event flags in an EventSet 

qEvtClose() Close an EventSet 

qEvtCreate() Create a new EventSet 

qEvtOpen() Return the existing EventSet or wait until an 
EventSet with that name is created. 

qEvtOpenNB() 
Return the existing EventSet with that name or 
return null if the EventSet with that name does not 
exists. 

qEvtOpenTO () Return the existing EventSet or wait until an 
EventSet with that name is created with time out. 

qEvtSignal() Sets events flags in an EventSet and signals  

qEvtWait() Wait for ALL or ANY event flag to be set in the 
EventSet  

qEvtWaitNB() Check for ALL or ANY event flags to be set in the 
EventSet 

qEvtWaitTO() Wait for ALL or ANY event flag to be set in the 
EventSet with time-out 

 

 EventSet Example 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 65 
 

14. Mutex Services  
A mutex object is a synchronization object to provide threads access to shared 
resources. Only one thread at a time can own a mutex object, whose name comes 
from the fact that it is useful in coordinating mutually exclusive access to a shared 
resource. For example, to prevent two threads from writing to a serial LCD at the 
same time, each thread waits for ownership of a mutex object before executing 
the code that writes to the serial LCD. After writing, the thread releases the mutex 
object. 

 

A thread uses the qMtxCreate() function to create a mutex object. The creating 
thread can request immediate ownership of the mutex object and can also specify 
a name for the mutex object.  

Threads can open an existing mutex object or wait until the object is created by 
specifying its name in a call to the qMtxOpen() function.  

Any thread with a handle to a mutex object can use the qMtxLock() function to 
request ownership of the mutex object. If the mutex object is owned by another 
thread, the wait function blocks the requesting thread until the owning thread 
releases the mutex object using the qMtxUnlock() function. The return value of the 
wait function indicates whether the function returned with the state of the mutex 
being locked or it timed-out. If more than one thread is waiting on a mutex, the 
thread with the highest priority is selected.  

After a thread obtains ownership of a mutex, it can specify the same mutex in 
repeated calls to the wait-functions without blocking its execution. This prevents a 
thread from deadlocking itself while waiting for a mutex that it already owns. The 
thread only has to call the qMtxUnlock() once to release ownership of the mutex.  

If a thread owns a mutex only that thread can unlock the mutex. This means that 
it is impossible to unlock the thread from an ISR or fiber.  

 Priority Inversion 
In scheduling, priority inversion is the scenario where a low priority thread holds a 
shared resource that is required by a high priority thread. This causes the execution 
of the high priority thread to be blocked until the low priority thread has released 
the resource, effectively "inverting" the relative priorities of the two threads. If 
some other medium priority thread attempts to run in the interim, it will take 
precedence over both the low priority thread and the high priority thread. 
Q▪Kernel™ implements the priority inheritance algorithm to eliminate priority 
inversions. 

Multiple related locks can be a problem in any design. Q▪Kernel™ implements the 
priority inheritance algorithm but that does not guarantee that all priority inversion 
and dead-lock problems are solved.  

The best strategy for solving priority inversion is to design the system so that 
inversion can't occur. Although priority inheritance prevents unbounded priority 

Fibers can’t lock mutexes because mutexes 
are owned by threads. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 66 
 

inversion, the protocol does not prevent bounded priority inversion. Priority 
inversion, whether bounded or not, is inherently a contradiction. You don't want to 
have a high-priority thread wait for a low-priority thread that holds a shared 
resource. 

 Alternatives 
Note that critical sections provide a similar service to that provided by mutex 
objects, except that a critical section prevents thread switching while a mutex 
blocks thread execution of the threads that are waiting for the mutex. Mutexes are 
more selective compared to critical sections but they are significantly slower. Use 
mutexes if the time to execute the critical section exceeds 100 µSec. Critical 
sections are the best solution to provide shared access to memory. Another 
interesting fact is that fibers always run as if they run inside a critical section so 
you don’t have to use critical section. 

 Mutex Functions 

Function Description 

qMtxClose() Close an existing Mutex 

qMtxCreate() Create a new Mutex 

qMtxLock() Lock an existing Mutex 

qMtxLockNB() Lock a existing Mutex without blocking 

qMtxLockTO() Lock a existing Mutex with time-out 

qMtxOpen() Return the Mutex by name or wait until a Mutex 
with that name is created. 

qMtxOpenNB() Get an existing Mutex or wait until a Mutex with 
that name is created. 

qMtxOpenTO() Return the Mutex by name or wait until a Mutex 
with that name is created with time out. 

qMtxOwner() Returns the owner of the mutex or null if nobody 
owns the mutex. 

qMtxUnlock() Unlock a locked Mutex. 

 Mutex Example 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 67 
 

15. Semaphore Services 
Conceptually, a semaphore maintains a set of permits. When a permit is acquired 
the number of permits is decremented if no permit is available. A release of a 
permit adds a permit, potentially releasing a blocking acquirer. If more than one 
thread is waiting on a semaphore, the thread with the highest priority is selected.  

No actual permit objects are used; the semaphore just keeps a count of the number 
available and acts accordingly. 

Semaphores are often used to restrict the number of threads that can access some 
(physical or logical) resource or protect access to a resource that contains multiple 
entities.  

A thread or fiber uses the qSemCreate() function to create a semaphore object. 
The creator specifies the initial number of permits and a name for the semaphore 
object. Threads can open an existing semaphore object or wait until the semaphore 
is created by specifying its name in a call to qSemOpen() function.  

 

Semaphores are the fastest synchronization mechanism. Semaphore functions: 

Function Description 

qSemAcquire() Acquire a semaphore 

qSemAcquireNB() Acquire a semaphore without blocking 

qSemAcquireTO() Acquire a semaphore with timeout 

qSemClose() Close an existing semaphore 

qSemCreate() Create a new semaphore 

qSemOpen() Open an existing semaphore or wait until it is created 

qSemOpenNB() Open an existing semaphore no blocking 

qSemOpenTO() Open an existing semaphore with time-out 

qSemPermits() Returns the number of permits 

qSemRelease() Releases a permit  

 
  

Permits can be released from an Interrupt 
Service Routines (ISR) 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 68 
 

 Semaphore Example  
The following example opens a semaphore and acquires a permit on the semaphore 
with a 2-second timeout. 

 
 

The following code releases a permit on the semaphore which will activate the 
waiting thread.  

 
 

//---------------------------------------------------- 
//  Thread code that waits for an access point 
//---------------------------------------------------- 
  pSEM pSem 
  pSem = qSemOpen("APS");     // Open expect that 
                              // semaphore is created 
    … … … …                   // Do other things 
 
  if (!qSemAcquireTO(pSem,2000000)) { 
    … … … …                   // No access in 2 sec 
  }                           // Handle error 
 
//If here we have the access point so do work 
    … … … …                     // Do other things
  
 

 
 

 qISR(_INT0Interrupt) { 
  _INT0IF = 0;           // Clear the interrupt  
  … … …                  // Create the access point 
  qSemRelease(pSemAP);   // Release an access point  
} 

 
 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 69 
 

16. Pipe Services 
Pipes allow communication between threads, fibers and ISRs and are designed to 
support high speed communication without a lot of thread switching.  

Fast ISRs normally operate in the 1 to 10 µSec time frame. A thread operates in 
the 1 millisecond time frame, hundreds of times slower than an ISR. Pipes are 
designed to connect the two time domains by providing a FIFO buffer for 
information storage and exchange. 

A good example is an UART driver. A thread or fiber writes information in the pipe 
and the transmit ISR reads the data from pipe and writes it in the hardware register 
to transmit the character. At a baud rate of 1Mbit a transmit interrupt is fired every 
10 µSec.  

If the buffer is (almost) empty the ISR readies a waiting thread and can then write 
new information in the pipe. If the size of the buffer is 100 and the ISR readies the 
waiting threads after 80 characters the thread will switch every 800 µSec. On a 16 
MIPS processor this generates a load of only 2.5% 

 

Pipes are not just FIFO buffers that allow concurrent reading and writing but they 
also must have the ability to block a thread that tries to write to a full pipe or tries 
to read from an empty pipe. Also a blocked reading thread must be activated when 
there is (enough) information in the pipe and a blocked writing thread must be 
activated when the pipe has (enough) space. Q▪Kernel™ provides a synchronization 
mechanism that is very flexible so pipes can be used in a lot of different situations. 
Sometimes a reading thread must be activated as soon as one element is put in 
the pipe. In other cases the reading thread must be activated when more than 
80% of the pipe is full to minimize context switches. This kind of flexibility can be 
best realized by notification functions. Those notification functions are defined 
during the creation of a pipe and are called “Notify Reader” and “Notify Writer”. 
When something is written in a pipe the reader notification is called and when 
something is read from a pipe the writer notification is called. The notification 
functions can take any action to synchronize threads or just do nothing and wait 
until there is more information in the pipe. The notification functions are called with 
two parameters; a pointer to the pipe object and the number of blocks that are 
written into the pipe or read from the pipe. This information can be used to handle 
device information.  

So if a reading thread needs to be activated when the pipe is 80% full the "Notify 
Reader" function tests every time it is called if the 80% is reached. If the pipe is 
less than 80% full it does nothing otherwise it activates a waiting thread. 

This type of synchronization can minimize the number of context switches and can 
better work in conjunction with hardware queues and DMA. Q▪Kernel™ has a 
significant advantage over competitive products because the implementation is 
more flexible and minimizes context switches. 

  

Pipes offer excellent performance for 
integration between ISRs and Threads 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 70 
 

The following block diagram shows how a UART driver would be implemented with 
pipes and thread events: 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the left side are the UART hardware registers and on the right side is the thread 
that functions as a driver. There is a pipe for sending information and a pipe for 
receiving information. The two ISRs on the hardware side are handling interrupts 
(red-line). The blue lines set hardware registers and the green lines ready the 
thread. The solid lines specify how data moves.  

The block diagram handles four scenarios that are discussed below: 

• The thread writes with qPipWrite() data in the write-pipe. qPipWrite() will 
execute the notification reader which controls the hardware and can enable 
interrupts. By doing so the UART will fire the transmit interrupt. If the 
thread cannot write the data it waits for a writer event. 

• The UART fires the Transmit interrupt and activates the send ISR. This ISR 
will read information with qPipRead() and that function notifies the 
notification writer. This function will signal the thread event so the thread 
will be readied if it was waiting for the event so it can keep writing. 

• The UART receives a character and executes the Receive ISR. This ISR read 
the data from the hardware and writes it to the pipe with qPipWrite(). This 
function notifies the reader and signals the thread event so it will activate 
the thread if it was waiting for the pipe to be filled. 

• The thread reads with qPipRead() function and if the pipe is empty the 
system will wait for the read event. This event will be signaled by the 
writer. 

 

  

qPipWrite() 

qPipRead() qPipWrite() 

qPipRead() 

 
Pipe 

 

 

 

Device 

Driver 

Thread 

Send 
ISR 

 

 

 

UART 

Hard- 

ware 

Pipe 
Recv 
ISR 

Notify 
Reader 

Notify 
Writer 

Notify 
Reader 

 

Notify 
Writer 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 71 
 

As seen in the previous example one thread can handle multiple events. It can just 
wait on ANY event and will become active if there is something to do. Q▪Kernel™ 
has a significant advantage over competitive products because one thread can not 
only handle sending and receiving but can handle multiple UARTS. Most other 
competitive products require two threads to handle the scenario above and require 
8 threads to handle four UARTS. This saves RAM, Flash and limits context 
switching.  

 

 Multiple Readers and Writers 
Pipes support multiple readers and writers like threads, fibers and ISRs. This make 
them unique compared to the competition. The following scenarios are supported: 

• Multiple Threads can read the same pipe 

• Multiple Threads can write the same pipe 

• Multiple Fibers can read the same pipe 

• Multiple Fibers can write the same pipe 

• Multiple ISR’s with the same priority can read the same pipe 

• Multiple ISR’s with the same priority can write the same pipe 

All other scenarios are not supported like a Thread and ISR both reading, Thread 
and Fiber are both reading, Fiber and ISR are both reading or ISR’s with different 
priorities are reading. The same scenarios for writing are also not supported.  

The priority and type of reader and the priority and type of writer of the same pipe 
can be completely different. Examples of these cases are: 

• A Thread can be the reader and an ISR’s the writer or vice versa 

• An ISR can be the reader and another ISR with a different priority can be 
the writer or vice versa. 

• An Fiber can be the writer and a Thread can be the reader or vice versa 

• An Fiber can be the writer and an ISR can be the reader or vice versa 

 

Multiple readers and writers introduce some challenges for the RTOS because it 
needs to control the pipe atomically. Q▪Kernel™ solved this by creating a block 
oriented approach that will work for bytes, or integers and complex structures. The 
whole block will be transferred in one atomic operation and guarantees that 
structures are transferred as a whole. Competing products work only with arrays 
of bytes or integers and can't guarantee that the sequence of bytes and integers 
is exactly the same with multiple writers. 

While Q▪Kernel™ guarantees that a block is transferred in one atomic operation it 
does not guarantee that the reader distinguishes which thread has written which 

One Thread can handle multiple pipes, 
limiting RAM, Flash and context switches. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 72 
 

data block and, therefore, the sequence can be lost. Whether or not this is a 
problem depends on the application. It can be solved by adding a sequence 
numbers in the data block. 

Pipes can also be used without thread synchronization and provide just simple very 
fast FIFO queues. Those highly optimized functions are very fast. (qPipPut() and 
qPipGet()) 

 Using Pipes with Messages 
Pipes can be used to transfer messages between threads, fibers and interrupts and 
provide better synchronization control the queues. 

Allocating and de-allocating messages and reading from and writing to a pipe can 
be done in interrupt service routines because all function operate atomically.  This 
combined with the powerful synchronization control makes them extremely fast to 
bridge interrupts with the messaging infrastructure.  

Pipes handle messages as simple integer wide entities (pointers) and store them 
in the FIFO queue like any other data element. There is a different function set for 
messages because the use count is incremented if a message is placed in the pipe 
and only one message can be read or written per function call.  

See messages services for more information.  

  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 73 
 

 Pipe Functions  

Function Description 

qPipBlockSize() Returns the size of the block specified during creation. 

qPipClose() Close an existing Pipe 

qPipCreate() Create a new Pipe  

qPipEntries() Returns the number of entries in the Pipe 

qPipGet() 
Read one or multiple blocks from the Pipe without 
calling the notification routine and thread 
synchronization. 

qPipGetFast() 
Read one or multiple blocks from the Pipe without 
calling the notification routine, thread synchronization 
and parameter checking. 

qPipGetBytFast() 
Read one byte from the Pipe without calling the 
notification routine and thread synchronization without 
parameter checking. (BlockSize must be 1) 

qPipGetWrdFast() 
Read one word (16 or 32 bit) from the Pipe without 
calling the notification routine and thread 
synchronization. (BlockSize must be 2 or 4) 

qPipMaxBlocks() Returns the maximum number of entries (Blocks) the 
Pipe can hold 

qPipOpen() Return the Pipe by name or wait until a Pipe with that 
name is created. 

qPipOpenNB() Return the Pipe by name or return null of a with that 
name does not exists. 

qPipOpenTO() Return the Pipe by name or wait until a Pipe with that 
name is created with time out. 

qPipPut() Write one or multiple blocks into the Pipe without calling 
the notification routine and thread synchronization. 

qPipPutFast() 
Write one or multiple blocks into the Pipe without calling 
the notification routine, thread synchronization and 
parameter checking. 

qPipPutBytFast() 
Write one byte to the Pipe without calling the 
notification routine and thread synchronization. 
(BlockSize must be 1) 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 74 
 

qPipPutWrdFast() 
Write one word (16 or 32 bit) from the Pipe without 
calling the notification routine and thread 
synchronization. (BlockSize must be 2 or 4) 

qPipRead() Read one or multiple blocks from a Pipe  

qPipReadFast() Read one blocks from a Pipe without parameter 
checking 

qPipWrite() Write one or multiple blocks into the Pipe 

qPipWriteFast() Write one blocks into the Pipe without parameter 
checking 

 Pipe Example 
See the Publish/Subscribe example. 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 75 
 

17. Queue Services 
The sole purpose of a queue is to exchange messages between threads and fibers. 
Multiple messages can reside in a queue. Queues are fast because they exchange 
pointers between threads, and a sending thread will recognize that there is a 
receiver and will short-cut the transfer. Competitive products work differently and 
are much slower. 

Q▪Kernel™ queues are fully automatic and require minimal user intervention. 
Messages are placed in the queue in First In, First Out (FIFO) order. If the queue 
is full and the sender wants to send, the sender will be blocked until there is space 
in the queue. If the queue is empty and a receiver tries to receive it will be blocked 
until the queue contains at least one message. This method is very simple and 
strait forward.  

 

 Queue Functions 

Function Description 

qQueClose() Close an open Queue 

qQueCreate () Create a new Queue 

qQueOpen() Open an existing queue and wait if the queue is not 
created 

qQueOpenNB() Open an existing queue without blocking 

qQueOpenTO() Open an existing queue and wait if the queue is not 
created with timeout 

Queues are very simple to use 
 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 76 
 

 Queue Example 
In the following example one thread creates a queue and sends a message. The 
other thread will receive the message. 

 

 
 

//---------------------------------------------------- 
//  Thread code sending thread 
//---------------------------------------------------- 
  pQUE pQue 
  pMSG pMsg 
  pQue = qSemCreate("Que",6); // Create with max 6 
                              // entries 
  pMsg = qMsgAlloc(10);       // create a 10 byte mes 
  pMsg->Data[0] = mydata1;    // fill some data 
    … … … …                   // fill rest of data 
  qMsgSend(pQue, pMsg);       // send the message 
    … … … …                   // Do other things 
  qMsgFree(pMsg);             // Free the message 
} 
 
//---------------------------------------------------- 
//  Thread code receiving thread 
//---------------------------------------------------- 
  pQUE pQue 
  pMSG pMsg 
  pQue = qSemOpen("Que");     // Open and wait until  
                              // queue is available 
  pMsg = qMsgReceive(pQue);   // receive message 
  if (pMsg->Data[0] == 1) {   // handle data 
    … … … …                   // Do other things 
  } 
  qMsgFree(pMsg);             // Free the message 
} 
 

 
 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 77 
 

18. Publish/subscribe services 
Publish/subscribe (or pub/sub) is a messaging pattern where senders (publishers) 
are unaware of specific receivers (subscribers). Subscribers express interest in one 
or more messages, and only receive messages that are of interest, without 
knowledge of what, if any, publishers there are.  

This decoupling of publishers and subscribers is called loosely coupling and has a 
number of advantages: 

• A change in one module does not force a ripple-effect of changes in other 
modules. Developing and maintaining software requires less effort and 
time due to the decreased inter-module dependency. 

• It will be easier to reuse software because there are fewer dependencies. 
A software module will be easier to test because dependent modules do 
not need to be included.  

• No changes are required if the number of subscribers or publishers 
changes. 

• This pattern promotes agility because a change in the application does not 
require that all software modules have to be changed and re-tested.  

The Q▪Kernel™ implementation of pub/sub is very simple to implement. A publisher 
creates a publish object with the function qPubCreate(). Every publish object has 
a name and other publishers and subscribers can get access to this publication by 
opening the object by name.  

Subscribers can subscribe to a publication and specify the message delivery 
method. The message can be delivered by calling a delivery function, by sending 
it to a queue or writing it into a pipe. Depending on the required delivery method 
the subscriber has to use one of the following functions, qPubSubscribeFun(), 
qPubSubscribePip() and qPubSubscribeQue(), to subscribe to a publication.  

• Use the function delivery method to decouple the time domains from 
publisher and subscriber. This means that messages can be lost. A good 
example is the measurement every millisecond of a tank level. A display 
doesn’t have to update this level every millisecond so the delivery function 
just gets the level and updates a global variable. The display is updating 
the information every second and it just uses the global variable with the 
value of that time. The publisher (tank-level) and subscriber (display) have 
different time domains, millisecond versus second, bridged by the pub/sub 
mechanism. 

• Use the pipe delivery method when no information can be lost and the 
developer needs full control over the information flow. Pipes provide better 
control to limit thread switching. 

• Use the queue delivery method when no information can be lost but the 
load is limited so full control of the information flow is not required. 

Messages are published with the function qMsgPublish() and the payload is a 
Q▪Kernel™ message (pMSG). The Q▪Kernel™ message infrastructure helps the 
developer with the life-time of the message. Every individual subscriber just has 
to free the message when done and Q▪Kernel™ will manage the life-time. Every 
subscriber will receive this message in a queue, pipe or by a delivery function 
depending on the delivery method. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 78 
 

• When a message is published and the delivery method is “pipe” Q▪Kernel™ 
will write the message into the pipe with the function qMsgWrite(). The 
subscriber can read the message with the function qMsgRead().  

• When a message is published and the delivery method is “queue” 
Q▪Kernel™ will queue the message with the non-blocking function 
qMsgSendNB() because it can’t preempt. The subscriber can read the 
message with one of the queue receive functions qMsgReceive(), 
qMsgReceiveNB() and qMsgReceiveTO(). 

• When a message is published and the delivery method is a “delivery 
function” Q▪Kernel™ will call the delivery function with the message as 
parameter. Depending on the internal state Q▪Kernel™ will call the function 
in a critical section or as a fiber to prevent collisions. In both cases the 
delivery function can only use non-blocking functions. 

In all cases the subscriber has to free the message.  

Subscribers functions (subscribed with qPubSubscribeFun()) are always executed 
within a critical section and sometimes as a fiber. For that reason blocking functions 
are not allowed in those functions. 

 Pub/sub functions 
 

Function Description 

qPubCreate() Create a publication based on a name 

qPubClose() Closes a publication and all its subscribers 

qPubOpen() Open a publication and wait until the publication is 
available 

qPubOpenTO() Open a publication and wait until the publication is 
available with timeout 

qPubOpenNB() Open a publication without blocking 

qPubSubscribeFun() Subscribe to a publication with a delivery function 

qPubSubscribePip() Subscribe to a publication with a pipe 

qPubSubscribeQue() Subscribe to a publication with a queue 

qMsgPublish() Publish a message to the subscribers. 

 

 Pub/Sub Example 
The following example uses a publisher that send messages to 3 subscribers, a 
function, a queue and a pipe. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 79 
 

 
A standard Q▪Kernel™ application that creates 4 threads. Thread9 has the highest 
priority so the start will continue at thread 9. 

 

 
The thread starts with creating the publication. The name is “Pub” which is used 
by the subscribers. A for loop is used to send the messages. In the loop a message 
is allocated, a counter is moved into the message and the message is published. 
The message is freed because this thread is done with it. We wait some time to 
mimic normal behavior. 

As you can see this thread does not have any knowledge of subscribers. This is 
real loosely coupling and if this thread measured a temperature, every subscriber 
could use this value. This module exists on its own and has to be tested only once 
and does not have to change when the application changes. The example is very 
simple but this could be a complex measurement and/or calculation module that 
can be re-used without testing.  

int main() {   
  qKrnInit(……);    // Initialize Q-Kernel 
  qThrCreate("Thr1",Thr1,0,256,10); // Function subscr 
  qThrCreate("Thr2",Thr2,0,256,20); // Queue subscr 
  qThrCreate("Thr3",Thr3,0,256,30); // Pipe subscr 
  qThrCreate("Thr9",Thr9,0,256,90); // Publisher 
  qKrnStart();     // Never returns here but the… 
  return 0;        // …return 0; prevents warnings  
} 

 
 

 

void Thr9(void *p) { 
  pPUB pub; 
  pMSG msg; 
  int n; 
 
  pub = qPubCreate("Pub");  // create the publisher 
  qThrSleep(qMSEC(1));      // other threads can start 
  for (n=0; n<10000; n++) { // do 10000 times 
    msg = qMsgAlloc(2);     // Allocate a message 
    msg->Data[0] = n;       // Put counter in data 
    qMsgPublish(pub, msg);  // Publish the message 
    qMsgFree(msg);          // Free the message 
    qThrSleep(45);          // wait 45µSec 
  }  
} 

 
 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 80 
 

 Subscriber is a function 

 
Thread 1 is started and is going to open the publication and subscribes to the 
publication with a function. Because the thread ends, Q▪Kernel™ will return all its 
resources to the resource pools. The function does all the work. 

The function will be called when a message is published. The function just checks 
if the counter matches the expected value but in a real application the function can 
do useful work. Because the message is managed it looks like this function just 
owns the message and when done it can free it.  

The message can be published by a thread, fiber or ISR. Even if an ISR publishes 
the message it will never run in an ISR. In all case it will run in a critical section, 
meaning that no blocking functions (waiting) are allowed.  

 Subscriber is a queue 

A subscriber as queue is the simplest solution to code.  

 
Thread 2 opens the publication, creates a queue and subscribes the publication to 
the queue. After initialization it runs an endless loop where it just waits for 
messages to be received and process the message. Also here it looks like the 
message is owned by the thread, while in reality it is shared with other threads.  

int Counter1 = 0;          // counter for verification  
 
void myFun(void *dummy, pMSG msg) { 
  if (Counter1++!=msg->Data[0]) { 
    qNtfError(1);          // give error if failure 
  } 
  qMsgFree(msg); 
}  
 
void Thr1(void* p) { 
  pPUB pub = qPubOpen("Pub"); 
  qPubSubscribeFun(pub,myFun); 
} 
 

void Thr2(void* p) { 
  INTU cnt = 0; 
  pMSG msg; 
  pPUB pub = qPubOpen("Pub"); 
  pQUE que = qQueCreate(0,10); 
  qPubSubscribeQue(pub, que); 
  while (1) { 
    msg = qMsgReceive(que); // wait until message 
    if (cnt++ != msg->Data[0]) { 
      qNtfError(2);         // give error if failure 
    }  
    qMsgFree(msg); 
} 
 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 81 
 

 Subscriber is a pipe 

A subscriber can use a pipe to execute the messages in the thread but limit thread 
switching. To do this it waits until the pipe is 80% full. Compared to queues this 
requires more coding but creates more control over thread switching for a better 
performance. 

 
Thread 3 opens the publication, creates a pipe and subscribes the publication to 
the pipe. After initialization it runs an endless loop where it tries to read a message. 
If there is no message it suspends itself and relies on the reader notification 
function to be resumed.  

During the creation of the pipe a read notification function will be defined. This 
function will be called when something is written in the pipe by the publisher. When 
there are 8 or more entries in the pipe it will resume the thread. If that is not the 
case it just returns. This behavior will limit the thread switching and will make the 
whole system faster. This example prevents 8 context switches. 

Also note that the function resumes the thread when entriesDone==0 to handle 
the case when the pipe will be closed. 

 

int Counter2 = 0;          // counter for verification  
 
void myNtfReader(pPIP pip, INTU entriesDone) { 
  if (qPipEntries(pip)>=8 || entriesDone==0)  
    qThrResume(qThrOpenNB ("Thr3"),1); 
}  
 
void Thr3(void* p) { 
  pPUB pub = qPubOpen("Pub"); 
  pPIP pip = PipCreate(0,2,10,myNtfReader,0); 
  qPubSubscribePip(pub,pip); 
  while (1) { 
    pMSG msg = qMsgRead(pip); 
    if (msg) { 
      if (Counter2++!=msg->Data[0]) { 
        qNtfError(3); 
      }  
      qMsgFree(msg); 
    } 
    else { 
      qThrSuspend(); 
    } 
  }  
} 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 82 
 

19. Message Services  
Messages are an essential part of Q▪Kernel™ because they can be used to transfer 
information from threads, fibers and interrupts. While most competitive products 
implement sending and receiving of messages, Q▪Kernel™ supports a much more 
comprehensive approach to transferring information.  

Q▪Kernel™ implements several mechanisms for transferring information: 

• Queues for simple information exchange 

• Pipes for maximum queue control and ISR support  

• Publications for loosely coupling of software modules and to promote re-use 
and agility 

All those mechanism require the management of messages. Q▪Kernel™ will 
manage the messages by keeping track of a use count with every message. The 
use count defines how many software entities, mostly threads, are using the 
message. After creation, the message count is 1. The use count is incremented if 
a message is sent to a queue, written in a pipe or publishes to subscribers because 
it has been made available to others. If a software component de-allocates the 
message, qMsgFree(), the use-count is decremented. Both sending and receiving 
threads need to de-allocate the message before the use-count reaches 0 and the 
object is returned to the memory pool.  

The only alternative to managed message is to send messages by value, meaning 
that messages will be duplicated. This adds a lot of overhead if the messages are 
large and don’t provide any solution for publishing messages because in that case 
the amount of interested parties in the message is unknown. 

The following example describes the simplest case of a sender and a receiver. 
Without managed messages the priority of the sender and receiver defines who 
needs to de-allocate the message.  

The normal sequence of operation for a sender is as follows: 

1. Sender allocates a message 

2. Sender fills the message with data 

3. Sender sends the message 

4. Sender de-allocates the message (if the receiver has a higher priority) 

 

The receiver does the following: 

1. Receiver request to receive a message 

2. Receiver receives the message 

3. Receiver read the data and does whatever it needs to do 

4. Receive de-allocates the message (if the sender has a higher priority) 

 

The sender needs to de-allocate the message if the receiver has a higher priority 
and the receiver needs to de-allocate the message if the send has a higher priority. 
With Q▪Kernel™ both sender and receiver de-allocate the message and this 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 83 
 

guarantees that the message is freed-up and the message is returned to the 
resource pool. 

Every thread handles the message as if it totally owns the message and does not 
have to synchronize with other threads. Q▪Kernel™ will handle this transparently. 

 

 
 

Messages can be allocated from Variable Memory Blocks or Fixed Memory blocks. 
Messages created from Fixed Memory Blocks can be allocated and de-allocated in 
Interrupt Service Routines. 

• Allocation from Variable Memory is simple. The allocation is based on the 
required size and the system returns a pointer to the message. 

• Allocation from Fixed Memory can be done in interrupt service routines and 
requires a fixed memory pool address. The function qMsgFixCreate() creates 
a fixed memory pool for messages and returns a pointer to that pool that can 
be used later to allocate messages.  

A newly allocated message has a use count of one, because it is only used by the 
unit that allocated it. If a message is sent by queue or pipe the use-count is 
incremented. This means that the message cannot be written before at least one 
user of the message, de-allocates the message. If a message use-count is greater 
than one, others rely on the content of the message and it cannot be written. If 
one of the users de-allocates the message the other user can now write it. If both 
users de-allocate the message it is returned to the pool.  

The structure that controls the message is MSG. See the structure below: 

 

 

It must be clear that the Pool and Type can't be used. The other fields have the 
following meaning: 

• UseCnt is read-only and has a value of 1 or higher. If the value is 1 the data 
can be written. If the value is greater than 1, the data is read-only because 
others rely on the information in the message. 

• The structure defines the Data as a simple array of unsigned integers.  

Message can be handled as if every thread 
owns the message. 

typedef struct sMSG { 
  void *Pool;          // DO NOT USE 
  uint8_t MemPoolType; // DO NOT USE 
  uint8_t UseCnt;      // Use count (READ-ONLY) 
  uint16_t MsgType;    // Type of message (READ-ONLY) 
  unsigned Data[];     // READ-ONLY if UseCnt > 1 
} MSG;                 // READ-WRITE if UseCnt == 1 
typedef MSG* pMSG; 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 84 
 

If the array of integers is not practical the developer can define another structure 
to handle information. The best way to accomplish this is to create a new structure 
where only the data is a different type. The user has to cast the message to the 
new format. All structures are supported because Q▪Kernel™ guarantees that data 
is on an integer boundary. 

 

  

 Messages and pipes 
Messages can be exchanged by pipes. Pipes are very powerful First In, First Out 
(FIFO) data structures. Pipes give the user full control over the activation of the 
reader and writer and are very fast. The combination of pipes and messages is very 
powerful because both can be managed in interrupt service routines. Messages can 
be sent to threads, fibers or interrupts. To create a pipe for exchanging message 
the size of the block (second parameter) should be defined as the size of the pointer 
like sizeof(pMSG). The third parameter defines the number of blocks which is in 
this case the number of messages.  

 

 
 

  

// Define the structure   
typedef struct sMY_MSG { 
  void *Pool;          // DO NOT USE 
  uint8_t MemPoolType; // DO NOT USE 
  uint8_t UseCnt;      // Use count (READ-ONLY) 
  uint16_t MsgType;    // Type of message (READ-ONLY) 
  uint8_t Level1;      // READ-ONLY if UseCnt > 1 
  uint8_t Level2;      // READ-ONLY if UseCnt > 1 
  uint32_t Counter1;   // READ-ONLY if UseCnt > 1 
  uint32_t Counter2;   // READ-ONLY if UseCnt > 1 
} MY_MSG;              // READ-WRITE if UseCnt == 1 
typedef MY_MSG* pMY_MSG; 
}; 
// Define and allocate 
pMY_MES mes; 
mes = (pMY_MES)qMsgAlloc(sizeof(MY_MES), 10); 
 
// Send the message 
qMsgWrite(pPip,(pMSG)mes); 
 
 

Message can be allocated in interrupt 
handlers and send or received from 

interrupt handlers 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 85 
 

 Messages and queues 
Messages can be exchanged by queues. While queues are less powerful than pipes 
they are much simpler to use. Simple send and receive function are available and 
threads just preempt when the queue is empty on a receive request or when the 
queue is full on a send request. Messages can be sent to threads or fibers. 

 Messages and publish/subscribe 
Publish/subscribe (or pub/sub) is a messaging pattern where senders (publishers) 
are unaware of specific receivers (subscribers). Subscribers express interest in one 
or more messages, and only receive messages that are of interest, without 
knowledge of what, if any, publishers there are. This decoupling of publishers and 
subscribers is called loosely coupling and promote re-use and agility. See the 
Publish/Subscribe Service chapter for more information. 

The managing of those messages is very important because the publisher is un-
aware how many subscribers are interested in the message and it is possible that 
this will change. Every time a message is published Q▪Kernel™ will send the 
message to all subscribers and will keep track of the use count. If a subscriber is 
done with the message it will “free” the message. If the use-count reaches 0 the 
message is physically de-allocated. 

 

 
 

Managed messages are vital in publish 
subscribe because the pattern is designed 

to hide the number of subscribers from 
every individual subscriber and publisher 

so it is unknown how the message is used.  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 86 
 

 Message Function 
 

Function Description 

qMsgAlloc() Allocate a message with a specific size. 

qMsgCopy() Allocates a new message and copies a data into the new 
message. 

qMsgFixAlloc() Allocates a message from a fixed pool.  

qMsgFixCreate() Creates a fixed memory pool for messages. 

qMsgFree() Lower the use count of a message and free the memory if 
use count is zero 

qMsgMaxSize() Returns the maximum size in bytes that can be stored in the 
message.  

qMsgPublish() Publish a message to all subscribers. 

qMsgRead() Read a message from a pipe. 

qMsgReceive() Receive a message from a queue and wait if there is no 
message available  

qMsgReceiveNB() Receive a message from a queue without blocking 

qMsgReceiveTO() Receive a message from a queue and wait with time-out if 
there is no message available  

qMsgSend() Send a message to a standard queue and wait if there is no 
room in the queue 

qMsgSendNB() Send a message to a standard queue without blocking 

qMsgSendTO() Send a message to a queue and wait if there is no room in 
the queue with time-out 

qMsgWrite() Write a message to a pipe. 

 

 

  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 87 
 

 Message Example 
The following example allocates a message in one thread and sends it to another 
thread.  

 
 

 
 

The thread does not have to know what the 
receiving thread does with the message 

and how long the message is in use. 

//  Thread code that allocates a message and send it 
//  We expect that the queue is already allocated 
 
  pMSG pMsg;                  // The message 
  … … … …  
  while (… …) { 
    INTU size = …………          // calculate the size 
    pMsg = qMsgAlloc(size);   // Allocate it 
    for (n=0; n<size; n++) {  // move size integers  
      pMsg->Data[n] = data[n];// into the data 
    } 
    qMsgSend(pQue, pMsg);     // Send the data.  
    qMsgFree(pMsg);           // Just free. Managed 
                              // message so we don’t 
                              // have to know what the 
                              // receiving thread does 
  }                           // with the message 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 88 
 

 

//  Thread code that receives the message 
//  We expect that the queue is already allocated 
 
  while (… …) { 
    pMSG pMsg;                // The message 
    pMsg = qMsgReceive(pQue); // Receive the data.  
    … … … …                   // Do something with the 
    … … … …                   // message. We can use 
    … … … …                   // the data without 
    … … … …                   // copying 
    qMsgFree(pMsg);           // Just free. Managed 
                              // message so we don’t 
                              // have to know what the 
                              // sending thread does 
  }                           // with the message 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 89 
 

20. Timer and RTCC Services 
A timer object is an object that starts a fiber when the specified due time arrives. 
Timers are completely disconnected from threads which make them very flexible, 
and they can be re-used.  

There are two types of timers that can be created:  

• A One-Shot timer is started and stops when it reaches its specified time. 

• A Periodic timer is reactivated each time the specified period expires, until 
the timer is stopped or closed.  

A thread uses the qTmrCreate() function to create a timer object. The creating 
thread specifies whether the timer is a one-shot timer or a periodic timer, the 
number of ticks or time, the function to call, the parameter for the function and a 
name for the timer object. Threads can open an existing timer by specifying its 
name in a call to the qTmrOpen() function.  

The function parameter can be used to exchange information between the creation 
of the timer and the function. This makes it possible to use one function for multiple 
timers.  

When a timer expires, the system executes the specified function. Some competing 
products set event flags. This produces a context switch, because a thread is 
waiting for that event. In a lot of cases this is not necessary because all the work 
can be done without a context switch. The function that will be executed if the time 
expires can implement that functionality by just signaling an event. Any thread can 
wait for that event flag. This approach limits the number of context switches and 
improves performance. 

 

This mechanism allows threads to combine the elapse of a timer with other events. 
This mechanism can be used if a thread has to synchronize one or more events 
with periodic time.  

Two types of clock sources can be used; the kernel timer or the kernel RTCC. A 
positive value specifies short times, in cycles implemented by the kernel timer, and 
a negative value specifies long times, in seconds implemented by the kernel RTCC. 
The macros qMSEC() and qUSEC() can be used to specify the time in milliseconds 
or µSeconds using the kernel timer. The qSEC() macro can be used to specify the 
time in seconds. The accuracy of the time is just as good as the accuracy of the 
source. The smallest practical time is a few hundred cycles.  

 RTCC Services 
One of the requirements of a Tick-Less RTOS is the availability of a Real Time Clock 
and Calendar (RTCC) for long wait times. Q▪Kernel™ utilizes timer functions to 
implement alarm functions. There is an alarm function qRtcAlarm() available for 
convenience but it is just an interface into the timer functions.  

The Q▪Kernel timer approach improves 
performance and facilitates synchronization. 
 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 90 
 

RTCC services are available to set the time (qRtcSetDatTim()) and get the time 
(qRtcSetDatTim()). The system also provides the uptime in seconds.  

 Date and Time Formats 

The system uses an internal format to store the Date/Time in a 32 bit unsigned 
integer. The integer contains the number of seconds since Jan, 1st 2000 12:00AM. 
This format has be chosen to minimize storage and for easy manipulation. For 
compatibility with other system and for convenient handling of dates and times the 
system also provides date and time structures in BCD format for simple extraction 
and display.  

The structures are defined as follows: 

 
 

There are functions to convert the internal format to the DATETIME structure.   

The system also provides functionality to manipulate dates, like adding or 
subtracting seconds, minutes, hours, days and years. Every time a date is returned 
the value "wday" is calculated which specifies the day of the week (0=Sunday, 
1=Monday, ... 6=Saturday) for that day. 

 

 

 

typedef struct sDATETIME { 
  uint8_t year;     // BCD codification 0x00->0x99 
  uint8_t rsvd;     // Reserved for future use  
  uint8_t mday;     // BCD codification 0x01->0x31 
  uint8_t mon;      // BCD codification 0x01->0x12 
  uint8_t hour;     // BCD codification 0x00->0x23 
  uint8_t wday;     // BCD codification 0x00->0x06 
  uint8_t min;      // BCD codification 0x00->0x59 
  uint8_t sec;      // BCD codification 0x00->0x59 
} DATETIME; 
typedef DATETIME* pDATETIME; 
 

Q▪Kernel provides elaborate date and time 
functions to minimize development time. 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 91 
 

 µSecond Services 
Q▪Kernel™ provides a service to calculate time differences accurately. The service 
counts the number of cycles and calculates31 the number of µSecond from there. 
There is no physical counter and no hardware timer is used with the exception of 
the kernel timer.  

This functionality adds only 40 cycles to the processing if the timer expires. 
Because Q▪Kernel™ is tick-less this occurs very infrequently, so the overhead is 
very small. While the processing overhead is low, this function can increase power 
consumption because it keeps the timer running and the power management 
functionality of Q▪Kernel™ is not able to switch to sleep mode. 

The counter starts when the function qKrnUSecOn() will be executed and can be 
stopped with the function qKrnUSecOff() which clears the counter. Because the 
function has to synchronize with the timer it will execute a short sleep of a few 
µSeconds.  

There are less granular functions available but the range is more limited. Those 
functions return a 32-bit unsigned integer and are faster to calculate differences. 
See the table below: 

 

Function Size Granularity Range 

qTimCycles() 64 bit 1 cycle > 5,000 year 

qTimUSec()  64 bit 1 µSec > 5,000 year 

qTimMSec() 64 bit 1 mSec > 5,000 year 

 

The µSecond timers are in sync with the kernel timer but not with the kernel real-
time clock. Their primary purpose is to calculate time differences based on cycles. 

 

  

                                                   

 
31 The calculation is based on shifting and dividing with a 16-bit value so the calculation takes no more than 93 cycles 
on a 16 bit PIC and less on a PIC32. 

The µSecond counter provides a way to 
calculate time difference accurately.  

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 92 
 

 Timer Functions 
 

Function Description 

qTmrClose() Close an existing timer 

qTmrCreate() Create a new timer 

qTmrOpen() Open an existing timer or wait until the timer is 
created 

qTmrOpenNB() Open an existing timer without blocking 

qTmrOpenTO() Open an existing timer or wait with timeout until the 
timer is created 

qTmrStart() Start a timer 

qTmrStop() Stop a timer 

 

  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 93 
 

 RTCC and Date time Functions 
 

Function Description 

qDtmAddDays() Add days to a date time and returns the 
result.  

qDtmAddHours() Add hours to a date time and returns the 
result. 

qDtmAddMinutes() Add minutes to a date time and returns the 
result. 

qDtmAddSeconds() Add seconds to a date time and returns the 
result. 

qDtmAddYears() Add years to a date time and returns the 
result. 

qDtmFromDateTime() Convert a DATETIME value to the internal 
format 

qDtmFromYMDHMS() Convert year, month, day, hour, minute 
and second to the internal format 

qDtmToDateTime() Convert the internal format to a DATETIME 
value 

qRtcAlarm() Create an alarm function that will be called 
as a fiber when the due date-time arrives.   

qRtcSetDatTim() Set the current date and time 

qRtcGetDatTim() Returns the current date and time if set. 

qRtcGetUptime() Returns the number of seconds since 
startup 

  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 94 
 

21. Installing and using Q▪Kernel™ 
Q▪Kernel™ is distributed as a zip file with the name qKernelV3363.zip. The version 
contains all versions of Q▪Kernel™ in that build. The last 4 digits in the name is the 
build number. Extract the file into a main directory like C:\qKernelFree, but it can 
be any drive or name because all references are relative. An example of the 
directory structure is specified below. 

V3353 
 ----- Documentation 
 ----- Source 
 -----  ------ Pic24_MPLAB.X (PIC24 /dsPIC port) 
 -----  ------  ----- Blinky.X (Test program) 
 -----  ------  -----  ----- dist 
 -----  ------  -----  -----  ------default 
 -----  ------  -----  -----  ------------ production 
 -----  ------  -----  ----- nbproject 
 -----  ------  ----- dist (Distribution for the Q▪Kernel™ libraries) 
 -----  ------  -----  ----- default 
 -----  ------  -----  -----  ------production (Library Pic24_MPLAB.X.a) 
 -----  ------  -----  ----- Generic 
 -----  ------  -----  -----  ------production (Library Pic24_MPLAB.X.a) 
 -----  ------  -----  ----- GenericDA 
 -----  ------  -----  -----  ------production (Library Pic24_MPLAB.X.a) 
 -----  ------  -----  ----- GenericEP 
 -----  ------  -----  -----  ------production (Library Pic24_MPLAB.X.a) 
 -----  ------  -----  ----- ThreadMetric 
 -----  ------  -----  -----  ------production (Library Pic24_MPLAB.X.a) 
 -----  ------  ----- nbproject 
 -----  ------  ----- ThreadMetric.X 
 -----  ------  -----  ----- dist 
 -----  ------  -----  -----  ------default 
 -----  ------  -----  -----  ------------ production 
 -----  ------  -----  ----- nbproject 
 -----  ------  -----  -----  ------private 
 -----  ------ Pic32_MPLAB.X (PIC32 port) 
 -----  ------  ----- Blinky.X (Test program) 
 -----  ------  -----  ----- dist 
 -----  ------  -----  -----  ------default 
 -----  ------  -----  -----  ------------ production 
 -----  ------  -----  ----- nbproject 
 -----  ------  ----- dist (Distribution for the Q▪Kernel™ libraries) 
 -----  ------  -----  ----- default 
 -----  ------  -----  -----  ------production (Library Pic24_MPLAB.X.a) 
 -----  ------  -----  ----- Generic 
 -----  ------  -----  -----  ------production (Library Pic24_MPLAB.X.a) 
 -----  ------  ----- nbproject 

  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 95 
 

 Adding Q▪Kernel™ to your application 
Q▪Kernel™ can be included as a project library or as an object library. We 
recommend to use the object library because this prevents building the library 
every time.  

Your application need to include “qKernel.h” in all source files in your project. The 
best way to do that is to add the path to this file in the “C include dirs.” of the 
compiler.  

 Using an object library 

As described above you can add Q▪Kernel™ as an object library. Include one of the 
standard configurations that is included in the distribution. The libraries are 
compiled with -s as optimization level, kernel timer is TMR4/TMR5 and the full 
parameter checking. 

 Using a project library 

You create your application and include Q▪Kernel™ as a library project. You go to 
properties of your project and click libraries. There you click “Add library Project” 
and select qKernel.X. In this case the source will be included and MPLAB will 
compile the source if required. You have to specify the configuration, for things like 
MCU, optimization level, etc. 

Q▪Kernel™ consists of many files so only the code that is required will be in flash. 
This makes building slow and even if a full build executes sporadic it is advisable 
to use the full computer potential. You can improve the build time by selecting 
Options from the main menu, then Embedded and select the tab “Project Options” 
Select the option “Use parallel make” to speed up the build. It will use all your 
cores of your processors.  

 
You can use all other compile and build options, like memory model, optimization 
levels, etc. for your project or Q▪Kernel™ so it is very flexible.  

 Using your own object library 
First create a configuration within the Q▪Kernel™ distribution and set your compile 
options. Build the system and include the created object library in your application. 

 

  

Improve the compile speed by selecting the 
option “Use parallel make” and use all the 

available cores 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 96 
 

 Creating a new application  
This example creates a simple application. While it looks complicated the whole 
thing is very simple. See the following screen shots.  

Start a new project 

 
  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 97 
 

Select the processor 

 
 

Select the debugging tool (ICD3) 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 98 
 

Select a compiler 

 
 

And the project name and folder (See that we use the D: drive) 

 
  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 99 
 

Add an object library directory (We use GenericEDS because that’s our processor) 

 
 

And select the file itself by pressing the Add button 

 
 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 100 
 

Now create a main c file and add some code like this example (See blinky) 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 101 
 

During typing you can use <ctrl><space> to find the function name. 

 
 

During typing MPLAB helps you with the parameters 

 
 

 

  



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 102 
 

Some remarks: 

1. The #include statement (line 3) in the program needs to find file qKernel.h 
in the porting directory. In the Blinky.X example we use a relative 
specification because both Q▪Kernel™ and the project are on the C: drive. 
Use the “preprocessing and messages” dialog and specify the “C include 
dirs.” 

2. Even if Q▪Kernel™ is included as an object library (versus a project) the 
debugger will find all sources related to the object and the cursor (green 
line) will show the Q▪Kernel™ code. 

 

 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 103 
 

22. Glossary 
 

Active Thread Only one thread can execute at any given time. The thread 
that is currently executing is called the active thread. 

Cooperative multi-
threading 

A scheduling system in which each thread is allowed to run 
until it gives up the CPU; an ISR can make a higher priority 
thread ready, but the interrupted thread will be returned to 
and finished first. 

CPU.  The Central Processing Unit is the “brain” of a 
microcontroller; the part of a processor that carries out 
instructions. 

Critical section A section of code which must be executed as a whole and 
can’t be interrupted by the scheduler. It can be 
interrupted by Interrupt Service Routines. 

Event  A message sent to a single, specified thread that something 
has occurred. The thread then becomes ready. 

Fiber A program running in a cooperative multitasking 
environment. Fibers yield themselves to run another fiber 
while executing. Fibers don't need a context switch to be 
activated. 

ISR Interrupt Service 
Routine 

The routine is called automatically by the processor when 
an interrupt is acknowledged. ISRs must preserve the entire 
context of a thread (all registers). 

Message Queue A data buffer managed by the RTOS, used for sending and 
receiving messages to and from a thread. 

Message  An item of data sent to or received from a Message Queue.  

Multi-threading The execution of multiple software routines independently 
of one another. The RTOS divides the processor’s time so 
that the different routines (threads) appear to be happening 
simultaneously. 

Preemptive multi-
threading 

A scheduling system in which the highest priority thread 
that is ready will always be executed.  

Priority (Thread) The relative importance of one thread to another. Every 
thread in an RTOS has a priority. 



Q▪Kernel™ User Guide  
 

© 2008-2015 Quasarsoft Ltd. qKernelUserGuide.docx        V6.0-3363 page 104 
 

Priority inversion  A condition in which a high priority thread is delayed while 
it waits for access to a shared resource which is in use by a 
lower priority thread. The lower priority thread temporarily 
gets the highest priority until it releases the resource. 

Queue  A data structure for sending and receiving character or 
integer wide data between threads or between threads and 
ISR 

Resource  Anything in the computer system with limited availability 
(e.g. memory, timers, computation time). Essentially, 
anything used by a thread. 

RTOS Real-time 
Operating System. 

The program section of an RTOS that selects the active 
thread, based on which threads are ready to run, their 
relative priorities, and the scheduling system being used. 

Semaphore A data structure that keeps track of multiple resources. 
Used when a thread must wait for something that can be 
signaled more than once. 

Software timer  A data structure which calls a user-specified routine after a 
specified delay. 

Stack  An area of memory with FIFO storage of parameters, 
automatic variables, returns addresses, and other 
information that needs to be maintained across function 
calls. In multi-threading systems, each thread normally has 
its own stack. 

Superloop  A program that runs in an infinite loop and uses no real-
time kernel. ISRs are used for real-time parts of the 
software. 

Thread  A program running on a processor. A multi-threading 
system allows multiple threads to execute independently 
from one another. 

Tick  The OS timer interrupt. Usually equals 1 millisecond. 

Tick-less A RTOS that does not use a tick is called a tick-less RTOS. 
Tick-less improves granularity and lowers power 
consumption.  

 

 


	1. Introduction to Q▪Kernel™
	1.1. What Makes Q▪Kernel™ Unique?
	1.1.1 Dual-Mode RTOS
	1.1.2 Low-Power Operation
	1.1.3 Tick-Less Operation
	1.1.4 Zero Interrupt Latency
	1.1.5 Advanced Interrupt Stack
	1.1.6 Advanced Memory System
	1.1.7 Dynamic System

	1.2. Why Use a Multi-Threading RTOS?
	1.3.  Why Q▪Kernel™?
	1.4.

	2. Q▪Kernel™ Benefits
	2.1.1 Dual-Mode RTOS
	2.1.2 License
	2.1.3 Royalty free
	2.1.4 Website
	2.1.5 Higher Quality
	2.1.6 Faster Delivery
	2.1.7 Lower Maintenance
	2.1.8 More Functionality
	2.1.9 Best Error Handling in the Business
	2.1.10 Easy to Use
	2.1.11 Support for the Most Advanced Interrupt Structure
	2.1.12 Separation of Concerns
	2.1.13 Write Once and Re-Use
	2.1.14 Designed for Deterministic, Real-time Response
	2.1.15 Maximize Development
	2.1.16 Stack Tracing

	3. Q▪Kernel™ Architecture
	3.1. Segmented Interrupt Architecture
	3.1.1 Zero Interrupt Latency RTOS2F
	3.1.2 Interrupt Jitter
	3.1.3 Dual-Mode and the Segmented Interrupt Architecture

	3.2. Tick-Less Operation
	3.3. Two timing sources
	3.4. Resource Usage
	3.4.1 Kernel Interrupt (required)
	3.4.2 Kernel Timer (required)
	3.4.3 Kernel RTCC (optional can be emulated)


	4. Interrupt Service Routines (ISR)
	4.1. Keep ISR short
	4.2. Interrupt Stack
	4.3. Q▪Kernel™ ISR
	4.4. Native Compiler Interrupt Syntax
	4.5. Q▪Kernel™ Services available from ISR’s
	4.5.1 Atomic Functions
	4.5.2 Deferred Functions
	4.5.3 List of Atomic and Deferred Functions


	5. Fibers
	5.1. Priority Fibers
	5.2. Queued Fibers
	5.3. Q▪Kernel™ Invoked Fibers
	5.4. Stack Requirements
	5.5. Extensive Use of Fibers

	6. Threads
	6.1.1 Multi-Threading
	6.1.2 Preemptive Multi-Threading
	6.1.3 Cooperative Multi-Threading
	6.2. Scheduling
	6.2.1 Priority Inversion

	6.3. Thread Stacks
	6.3.1 Shared Stack (PIC24E and dsPIC24E only)

	6.4. Thread Creation
	6.5. Thread Events
	6.6. Resuming a waiting or suspended thread

	7. Dual-Mode RTOS
	7.1. Using the DSP Engine

	8. Memory and Memory Allocation
	8.1. Memory Allocation
	8.2. Memory types
	8.2.1 “Allocate only” Heap
	8.2.2 Variable Memory Blocks
	8.2.3 Fixed Memory Blocks
	8.2.4 Conventional C Runtime Heap

	8.3. Choosing Type of Memory
	8.4. Using malloc(), free() and realloc()
	8.5. Allocation and De-Allocation Speed
	8.6. Memory Functions
	8.7. Example Memory Allocation

	9. Power Management
	9.1. Interrupt Response Time in Low Power Mode

	10. Statistic Services
	10.1. Switch Notification
	10.2. Statistics

	11. Services and Objects
	11.1. Dynamic Object Management and Naming
	11.2. Time-Out and Blocking Functions
	11.3. Error Handling
	11.3.1 Application Errors
	11.3.2 Notification of Errors
	11.3.3 Logging of Errors
	11.3.4 Error Handling Example

	11.4. Structures, Unions and Data Types
	11.4.1 Common Structures, Unions and Defines


	12. Critical Sections Services
	12.1. Critical Sections and Interrupts

	13. EventSet Services
	13.1.  EventSet Functions
	13.2. EventSet Example

	14. Mutex Services
	14.1. Priority Inversion
	14.2. Alternatives
	14.3. Mutex Functions
	14.4. Mutex Example

	15. Semaphore Services
	15.1. Semaphore Example

	16. Pipe Services
	16.1. Multiple Readers and Writers
	16.2. Using Pipes with Messages
	16.3. Pipe Functions
	16.4. Pipe Example

	17. Queue Services
	17.1. Queue Functions
	17.2.  Queue Example

	18. Publish/subscribe services
	18.1. Pub/sub functions
	18.2. Pub/Sub Example
	18.2.1 Subscriber is a function
	18.2.2 Subscriber is a queue
	18.2.3 Subscriber is a pipe


	19. Message Services
	19.1. Messages and pipes
	19.2. Messages and queues
	19.3. Messages and publish/subscribe
	19.4.  Message Function
	19.5. Message Example

	20. Timer and RTCC Services
	20.1. RTCC Services
	20.1.1 Date and Time Formats

	20.2.  µSecond Services
	20.3.
	20.4. Timer Functions
	20.5. RTCC and Date time Functions

	21. Installing and using Q▪Kernel™
	21.1. Adding Q▪Kernel™ to your application
	21.1.1 Using an object library
	21.1.2 Using a project library

	21.2. Using your own object library
	21.3. Creating a new application

	22. Glossary

