

Q▪Kernel™
Feature Guide
Version 6.0-3363

Q▪Kernel™ is a product of QuasarSoft Ltd.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 2

License
Q-KernelFree Copyright (c) 2013 QuasarSoft Ltd.

Q-KernelFree is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License (version 3) as published by the Free
Software Foundation and modified by the QuasarSoft Ltd. exception.

Q-KernelFree is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the full license text at the following link
<http://www.quasarsoft.com/license.html>

For the purpose of applying the license to this document, I consider "source code"
to refer to this document source (.docx) and "object code" to refer to the
generated file (.pdf).

QuasarSoft Ltd

312-5th Avenue Suite No. 354

Cochrane Alberta T4C 2E3

Canada

Tel. +1 (403) 450 3482

www.quasarsoft.com

The QuasarSoft Ltd. EXCEPTION

You may not exercise any of the rights granted to You in any
manner that is primarily intended for or directed toward commercial
advantage or private monetary compensation. The exchange of the
Program for other copyrighted works by means of digital file-sharing
or otherwise shall not be considered to be intended for or directed
toward commercial advantage or private monetary compensation,
provided there is no payment of any monetary compensation in
connection with the exchange of copyrighted works.

http://www.quasarsoft.com/license.html
http://www.quasarsoft.com/

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 3

About this Document
This document assumes that you already have background knowledge of the
following:

• The software tools used for building your application, mainly the compiler
and linker

• The C Programming language

• The processor

If you feel that your knowledge of C is not sufficient, we recommend The C
Programming Language by Kernighan and Richie (ISBN 0-13-1103628), which
describes the standard in C-programming and, in newer editions, covers the ANSI
C standard.

The Q▪Kernel™ Reference Guide is available to learn the API.

How to Use this Manual
The intention of this manual is to give you detailed information about the
Q▪Kernel™ features.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 4

1. Architecture .. 6
1.1. Segmented Interrupt Architecture ... 6

2. Architectural features ... 8
2.1. Dual-Mode RTOS... 8
2.2. Low Power and Tick-less .. 9
2.3. Integrated Power Management ... 9
2.4. Never Disables Interrupts .. 9
2.5. Zero Interrupt Latency and No Interrupt Jitter .. 10
2.6. Hard Real Time ... 10

3. Feature and functionality .. 11
3.1. Threads and Fibers .. 11
3.2. Memory management .. 11
3.3. Statistics and Thread & Fiber Tracking ... 12
3.4. Real-time Clock, Alarm and Timer functions ... 12
3.5. Centralized Error Handling ... 12
3.6. Scheduling ... 13
3.7. Minimize RAM usage .. 13
3.8. Advanced API ... 14
3.9. Threads ... 14
3.10. Fibers .. 15

4. Managed Kernel Objects ... 16
4.1. Mutexes ... 16
4.2. Semaphores ... 17
4.3. EventSets .. 17
4.4. Pipes ... 18
4.5. Messages ... 18
4.6. Publish/subscribe functionality .. 19

5. Performance .. 21

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 5

Introduction
Q▪Kernel™ is a preemptive Real Time Operating System, or Kernel, specifically
developed for a new generation of processors. Q▪Kernel™ fully exploits the
capabilities of those processors by implementing a unique segmented interrupt
architecture, making it the fastest and most versatile RTOS. The architecture
enables Dual-Mode capabilities not found in other Real Time Operating System.

What makes Q▪Kernel™ Unique?
Q▪Kernel™ has some unique features not found in any other Real-Time Operating
System. The list of features is very complete, but a number of features really
separate Q▪Kernel™ from the competition.

• Dual-Mode RTOS

The Dual-Mode features of Q▪Kernel™ means that you can use the same
RTOS for control applications and high dataflow and/or DSP applications.

• Tick-less RTOS

Because Q▪Kernel™ is tick-less the timing granularity is very fine, up to 1
µSecond and there is no tick to consume power.

• Power management

Integrated power management helps the developer to design systems with
low power consumption, without much effort. The power management
combined with the tick-less feature produces an RTOS with the lowest power
consumption in the market place.

• Zero interrupt latency

Q▪Kernel™ never disables interrupts, not for a single cycle. This allows any
applications to use an RTOS because the interrupt latency is only determined
by the underlying hardware.

• Advanced interrupt stack

Q▪Kernel™ uses an interrupt stack implementation that switches the stack
before the user interrupt code is executed. This implementation is unique in
the business and minimizes RAM usage significantly.

• Advanced memory system

While most competitors provide the user with fixed memory blocks,
Q▪Kernel™ supplies the developer with an advanced memory systems that is
deterministic but still flexible. The developer can allocate and de-allocate
memory with different sizes without the risk of fragmentation.

• Threads and Fibers

Most competing products provide threads. Q▪Kernel™ is one of the few
RTOSes that provides the developer fibers. This means that the developer can
use the right tool for the right task and optimize speed and/or minimize RAM
usage.

• Best error handling in the business

Q▪Kernel™ is the only RTOS that provides the developer with a centralized
error management system and a ways to log errors in flash that always work.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 6

1. Architecture
The architecture of Q▪Kernel™ set it aside of most competitors. It uses the
“Segmented Interrupt” architecture, is Dual-mode, tick-less, contains power
management and never disables interrupts for real zero interrupt latency.

1.1. Segmented Interrupt Architecture
Most competitive systems are designed to disable interrupts during critical
operations. This design is called the “Unified Interrupt Architecture”. Q▪Kernel™ is
designed to never disable interrupts and this architecture is called the “Segmented
Interrupt” architecture and makes losing interrupts a thing of the past. This unique
architecture will never disable interrupts and the combination with fibers makes
interrupt handling very fast. As a result Q▪Kernel™ does not add a single cycle to
the interrupt latency and facilitates seamless communication between Interrupt
Service Routines, threads and fibers.

The interrupt processing prevents Interrupt jitter. Reducing the jitter is important
for any RTOS, since they must maintain a guarantee that the execution of specific
code will complete within an agreed amount of time. Only “Segmented Interrupt”
architectures are able to guarantee jitter free operation.

In short the advantages are:

• Interrupt jitter is low or even zero for the highest interrupt priority.

• Interrupt latency the same as that of the underlying hardware.

• Very high interrupt rates. Q▪Kernel™ running on a 40MHz PIC24H can handle
more than 615,000 interrupts per second. The best performing “Unified
Interrupt” architecture implementation (ThreadX) only handles 230,000
interrupts per second. See for more details the performance section in this
document.

• Interrupt handlers can be very short leading to a more responsive system.

• Interrupts are allowed to use most of the RTOS functions including all
signaling functions.

Many competing systems claim zero interrupt latency. While that can be correct
only the segmented interrupt architecture allows those interrupts to communicate
with the rest of the system. These interrupt handlers are standalone and can't be
very functional. Those claims are more for marketing purposes than anything else
because if an interrupt handler can signal events, release semaphore or write in
queues they are use-less.

See the architecture diagram at the next page.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 7

Interrupts are

handled based on
their priority.

ISR can use the
interrupt stack.

Threads run in
parallel and

require their own
stack

Lowest
Priority

Higher
Priority

Fibers run
priority based
and use the
interrupt stack

Fiber provided by the developer

Thread provided by the developer

Kernel and Scheduler

Priority
Fiber

Control

Queued
Fiber

Control

Expired
RTCC

Control

Expired
Timer

Control

Thread
Scheduling

Fiber Fiber Fiber Fiber Fiber

User Thread

User Thread

User Thread

User Thread

Idle Thread

Depending on
the state of the
kernel, some functions
must be delayed.

See API documentation

 Kernel Interrupt

Kernel Timer

Lowest priority Highest priority

Zone 2

Zone 0
User threads
Idle thread

ISR provided by the developer

Zone 1

Kernel RTCC

ISR

ISR Enabled Functions

ISR ISR
User Interrupts

ISR

Figure 1 Architecture Diagram

This diagram indicates at which CPU level every components runs and which components
are provided by Q▪Kernel™. All threads run at CPU priority 0 and can be interrupted by
the Kernel/Scheduler which runs at CPU priority 1. The Kernel/Scheduler can be
interrupted by ISR’s. Signal functions always use the Q▪Kernel™ interrupt for
synchronization purposes. ISR's that use Pipes or Semaphores can directly communicate
with the kernel because they behave atomically.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 8

2. Architectural features
2.1. Dual-Mode RTOS

A new breed of embedded applications is rapidly evolving. Traditional DSP
applications are adding networking and other control functionality. But at the same
time, the typical MCU control application will often include High Dataflow
requirements like streaming media and other DSP functions. An emerging solution
for this new class of 'hybrid' application is the convergent processor. This design
approach combines both DSP and RISC/microcontroller capabilities into a single,
unified architecture.

A processor that implements this architecture can operate as a DSP engine, be
totally dedicated to a control application, or can operate somewhere in between.
This makes those processors suitable for everything from industrial control to
portable devices. Single convergent processors are an attractive alternative to the
larger and more costly RISC and DSP processors. The dsPIC and PIC32MX from
Microchip are convergent processors that can replace the RISC and DSP
processors.

While Microchip implemented the hardware for convergent processing, the software
is often lacking. A traditional multithreading RTOS adds enormous overhead to the
DSP portion of the application. While a simple scheduler may work fine for the DSP
or High Dataflow part of the application, it is not a good solution for a control
application.

The traditional RTOS requires a stack for every thread, so it can block while waiting
for an event and can be preempted by a higher priority thread. The switching
between threads, known as context switching, is an expensive operation especially
for processors with lots of context registers1 like the dsPIC/PIC24 (20) and PIC32
(36). The larger the context, the longer it takes to switch the context.

DSP and High Dataflow applications typically read a block of data, operate an
algorithm on the data, and then send the data to another programming unit for
further processing. Due to the real time nature of the data, the algorithm must
start within a very tight window once the data becomes available. Developers
often design their own custom executive that handles the High Dataflow based on a
corporative scheduling model. To combine this model with a traditional RTOS they
run the algorithms in a high priority thread which adds a lot of overhead.

The Dual-Mode RTOS combines the traditional thread-based kernel architecture for
real-time control processing with specialized fibers for High Dataflow operations.
The architecture accommodates the different needs for both domains by separating
them. Q▪Kernel™ enables both types of application code to run fully optimized on a
single processor, and both fibers and threads use a common API.

In order to meet real-time requirements, the DSP and High Dataflow processes run
as fibers, at a priority that is higher than control threads which ensures they get
access to the CPU. These fibers are lightweight because they have no context,
making the switch from fiber to fiber very fast. Furthermore, fibers run at a priority
just below that of interrupt handlers, a position that tends to reduce startup
latency and minimize jitter.

1 Context registers are not only the primary registers, but also the supporting registers like RCOUNT, SPLIM,
TBLPAG, PSVPAG, etc. for the 16-bit PIC’s and EPC, SR, HI, LO, etc. for the 32-bit PIC’s.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 9

2.2. Low Power and Tick-less
Many embedded applications spend most of their time waiting for an event to
happen – a touch on a panel, incoming communication or wait for a time delay. In
many applications the processor is only active for a small amount of time and
battery life can be extended significantly by placing the processor into idle or sleep
mode. Maximizing idle or sleep time, and minimizing active time is the key to
extending battery life.

This means that state machines with looping and polling don’t work well, but
interrupt driven applications based on an RTOS do. While an RTOS is a much better
solution, it has one disadvantage. Most RTOS require a tick for time management.
This causes the processor to be frequently activated which consumes additional
power. The shorter the tick-time, the more power is consumed. Applications often
require a short tick-time for finer timing. A Tick-Less RTOS solves this problem.

Q▪Kernel™ is tick-less and eliminates polling completely. It also optimizes power
saving by splitting the timing into a human time scale (1 second to >30 years) and
a processor time scale (1 µSec to 10 Sec). The human time scale uses the RTCC or
the 32 KHz timer that is available in sleep mode and provides more power saving.
The processor time scale provides a wait time with a granularity of 1 µSec. When
there is an outstanding short time request, the processor can be switched to idle
mode. If there is no outstanding short time request, the system will stop the timer
and switch to sleep mode. This means that power consumption is always minimized
while the system is waiting for user activity.

2.3. Integrated Power Management
Low power consumption is a deciding factor in many embedded applications. More
and more applications like medical devices, wireless communications and personal
devices demand low power consumption for a better battery life. Most hardware
vendors, like Microchip, have equipped their processors with power saving
features.

Most processors, including the 16 and 32 bit chips from Microchip, provide several
power saving modes. Q▪Kernel™ contains integrated power management that
makes it simple to lower power consumption. When the RTOS is idle, it signals the
application and provides the best power saving mode. The application has the
ability to disable additional hardware and instruct the RTOS to select the required
power mode. The power management module will select this mode without
suffering from race conditions. Q▪Kernel™ handles all race conditions and makes
the implementation simple and flexible.

2.4. Never Disables Interrupts
Competitive systems are designed to disable interrupts during critical operations.
Q▪Kernel™ is designed to never disable interrupts. The “Segmented Interrupt”
architecture makes losing interrupts a thing of the past. This unique architecture
will never disable interrupts and the combination with fibers makes interrupt
handling very fast. As a result Q▪Kernel™ does not add a single cycle to the
interrupt latency and facilitates seamless communication between Interrupt Service
Routines, threads and fibers. It can handle very high interrupt rates. In the Thread
metrics interrupt performance test an interrupt signals a waiting thread. A PIC24H
running at 40 MHz can handle more than 615,000 of those tests per second.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 10

The interrupt processing prevents Interrupt jitter. Reducing the jitter is important
for Real Time Operating Systems, since they must maintain a guarantee that
execution of specific code will complete within an agreed amount of time. Only
“Segmented Interrupt” architectures are able to guarantee jitter free operation.

2.5. Zero Interrupt Latency and No Interrupt Jitter
Interrupt latency is the time between an interrupt request and the execution of the
first instruction of the Interrupt Service Routine. The interrupt latency is the sum of
a lot of different smaller delays explained below.

The first delay is typically in the hardware. Modern hardware architectures use
instructions that are single cycle or double cycle. Hardware typically introduces 4 to
8 cycles of fixed interrupt latency.

The second delay is related to the RTOS and the fact that interrupts are disabled.
Most RTOS are based on the “Unified Interrupt” architecture temporarily disabling
the interrupts to protect critical sections including thread switching. This
contributes to longer interrupt latency.

Q▪Kernel™ has a segmented interrupt architecture that never disables interrupts,
but will postpone communication with the RTOS when a critical section is detected.
This approach solves the interrupt jitter and guarantees zero interrupt latency.
Jitter is the variation in interrupt latency. Disabling interrupts always leads to
interrupt jitter.

2.6. Hard Real Time
A hard real-time system, also called deterministic or temporal correct, is a system
that requires a guaranteed response to specific events within a defined time period.
The failure of a hard real-time system to meet these requirements typically results
in a severe failure of the system.

The correctness of an operation depends not only upon its logical correctness, but
also upon the time in which it is performed. The system can be seen as a software
extension of the hardware ISR mechanism and guarantees that the highest priority
thread that can run shall run. To optimize the deterministic behavior of the system
Q▪Kernel™ implements the following mechanisms:

• Zero Interrupt Latency

• Interrupts are never disabled

• Memory allocation and de-allocation is deterministic

This approach delegates the timing of the application Q▪Kernel™, so the developer
can focus on the behavior of the system.

A Hard Real Time RTOS like Q▪Kernel™ supports the developer to create a
dependable and stable system. If the application is tested it remains working since
the timing will always be the same.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 11

3. Feature and functionality
Q▪Kernel™ provides the basic functionality that most competitors provide and more
advanced features like a 100% deterministic variable memory system, managed
messages, fibers, statistics and tracking and an advanced publish/subscribe
mechanism that promotes re-use of code and development agility.

3.1. Threads and Fibers
Q▪Kernel™ combines traditional thread-based kernel architecture for real-time
control processing with specialized fibers for High Dataflow operations.

In order to meet real-time requirements, High Dataflow processes run as fibers, at
a priority that is higher than control threads which ensures they get access to the
CPU. These fibers are lightweight because they have no context, making the switch
from fiber to fiber very fast. Furthermore, fibers run at a priority just below that of
interrupt handlers, a position that tends to reduce startup latency and minimize
jitter.

3.2. Memory management
Most Real Time Operating Systems provide the developer with a simple fixed-size-
blocks memory allocation algorithm. This works very well but is not very flexible
because the developer needs to know the memory requirements in advance,
including size. Q▪Kernel™ support three memory allocation mechanisms so the
developer can always use the optimal mechanism. The memory allocation
mechanisms are not only versatile but also much faster than any competitor.

• “Allocate only” heap. In embedded systems, many blocks are permanently
allocated at startup. The heap works well because each block can be exactly
the right size. Fragmentation is not a problem because these blocks are never
released. The used algorithm is fast and deterministic.

• Fixed Memory Blocks. Q▪Kernel™ also implements the traditional fixed-size-
blocks memory allocation algorithm but added the extra facility to allocate
and de-allocate from interrupt handlers. The used algorithm is fast and
deterministic.

• Variable Memory Blocks. The Variable Memory Block algorithm manages
blocks of every size and functions like malloc() and free(). Allocation is based
on the required size of the memory block. The algorithm is fast and
reasonable deterministic and there is no external fragmentation. Allocation
can also be based on the pool and in that case the allocation and free are
100% deterministic and extremely fast.

• “Allocate only” EDS heap. Some of the devices in the 16-bit PIC line
support Extended Data Space memory management and this makes it
possible to address many megabytes of data space. To address this memory
the system uses 32-bit pointers and the DSWPAG and DSRPAG registers. The
EDS heap works exactly the same as the standard heap but memory is it
returns.

Q▪Kernel™ is the only RTOS that specifies exactly how many cycles it takes to
allocate and de-allocate memory.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 12

3.2.1 Extended Data Space for Thread Stacks

Some of the devices in the 16-bit PIC line support Extended Data Space memory
management and this makes it possible to address many megabytes of data space.
Threads can have their stack in EDS while they still operate at full speed without
wait states. This also means that the developer can create many threads.
Switching to a 32 bit processor is not always required.

While context switching from a thread with an EDS stack to another thread with an
EDS stack take some more time switching from an EDS stack to a thread with a
standard stack is just as fast as there were no EDS stack threads. See also the
Performance chapter in this manual.

3.3. Statistics and Thread & Fiber Tracking
Q▪Kernel™ provides detailed statistics per thread and system overhead. It provides
a very accurate picture how much CPU time is used per thread, by Q▪Kernel™ itself
and how much free CPU time there is.

While statistics are very use-full they change the timing of the application. Fiber
and Thread tracking is non-intrusive and does not change the timing. Tracking
makes it possible to follow the application timing in detail with a logic analyzer
including individual threads, priority and queued fibers and the Q▪Kernel™
scheduler.

Another form of tracking is the switch notification. A user function will be called
when the system switches threads. The developer can write code to solve difficult
to find issues or can code extensive tracking mechanisms for debugging purposes.

3.4. Real-time Clock, Alarm and Timer functions
Q▪Kernel™ provides a software real time clock for human timing requirements and
timer functions for processor scale timing. Because Q▪Kernel™ is tick-less it
provides timing functions with the granularity of 1 µSecond up to 30 years. The
RTCC or a 32 KHz crystal with TMR1 can be used to create the software real-time
clock or it can be emulated from the processor clock.

Both the RTCC and processor clock are completely disconnected from threads
which makes it very versatile. Expired timers or RTCC alarms run as fibers and use
the interrupt stack. Because timers are managed objects they can be created,
deleted and opened. Re-use of timers is possible.

Some competing products set event flags. This results almost always a context
switch, because a thread is waiting for that event. In a lot of cases this is not
necessary because all the work can be done without a context switched.

Q▪Kernel™ also provides integration with the timing functions of the TCP/IP stack
for easy integration.

3.5. Centralized Error Handling
Centralized Error handling minimizes code complexity. When a Q▪Kernel™ function
returns, the developer knows that the function ended successful so it is not
necessary to test the result. When an error occurs control resumes at the central
error handler instead of being passed back to the caller.

The central error handling is very efficient during debugging because the developer
only has to set one breakpoint for all fatal errors. All errors have a unique code so

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 13

the developer knows immediately what's wrong. The system can also be used for
application errors.

Errors can occur in interrupts and in other places where it is not possible to log
them directly and it could be that the system is not stable anymore because of the
error. Q▪Kernel™ has a special feature that makes it possible to log the errors
after a reset.

Q▪Kernel™ is one of the few products that use the stack overflow detection of the
processor if available. This means that undetected stack overflow is a thing of the
past and provides the developer with early detection of problems. This makes the
developer more efficient. Stack overflow and other exceptions are integrated in the
centralized error handling.

3.6. Scheduling
Q▪Kernel™ supports preemptive and cooperative scheduling. Preemptive scheduling
involves the use of an interrupt mechanism which suspends the currently executing
thread and invokes the scheduler to determine which thread should execute next.

Interrupts or the scheduler can preempt a thread or a thread can preempt itself
and this always happens immediately. There is no time-delay between the moment
that a thread with the highest priority wants to run and the moment the context
switch will be enabled.

Cooperative scheduling occurs when the programmer yields execution to another
thread programmatically. Cooperative multi-threading is supported by Q▪Kernel™.

3.7. Minimize RAM usage
Q▪Kernel™ is designed to minimize RAM usage to make as much as possible RAM
available to the application. The most important RAM saving comes from the
interrupt stack, fibers, Shared stacks and dynamic memory allocation.

• The interrupt stack can be used by all interrupt handlers and fibers. Interrupts
occur at unpredictable times so all threads have to accommodate the worst
case interrupt memory usage which lead to large thread stacks and a waste
of memory.

• Fibers use the interrupt stack and can minimize the number of threads. This
can save a lot of memory because thread stack space is not used.

• Shared Stacks can be used to limit memory allocation for some PIC24F and all
PIC24E and dsPIC33E devices. This method uses shared stack space in the
low memory range (0-32k) and dynamically exchanges this with upper
memory (64k). Threads with shared stacks run with exactly the same speed
as standard threads but save lots of lower memory.

• Almost all memory requirements, including stacks, messages, objects and
application memory can be freed if not used anymore. Almost all services
have a "Create" and a "Close" function including threads. This means that
drivers that run in threads don't require memory if they are not used.

Functional applications can be built on a MCU with only 2kb of RAM.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 14

3.8. Advanced API
Strong naming conventions are imposed on the API for optimal code readability
and to make function-names unique. All function names are based on polish
notation and names always start with a lower case q to make then unique.

The functions are named in qSrvFunction() where Srv is the service like Evt, Sem
or Thr and Function is the name of the function like Create, Open, etc. Combined
examples are qEvtCreate(), qEvtOpen(), qSemCreate(), qThrCreate(), qThrOpen().

Q▪Kernel™ tries to keep the number of parameters as low as possible. Most
function only has one or two parameters for optimal code readability. All wait
functions like qThrOpen(), qEvtWait() qMsgReceive() etc. are provided in three
variants, the normal version that never times out like qMsgReceive(), a non-
blocking version like qMsgReceiveNB() and qMsgReceiveTO() where the developer
can specify the time-out.

3.8.1 Type save parameters

Q▪Kernel™ provides the developer with advanced API that accepts type save
parameters so errors are found during compile time instead of run-time. Every
kernel object has its own type like pQUE for a queue object or pEVT for EventSet
objects. Mixing the types will be detected at compile time. Type save parameters
are checked at compile time so they don't have to be checked at run-time making
it faster.

3.9. Threads
A thread contains the code to perform an application task. While tasks can also be
performed by fibers the main differences is that threads can wait on an event, wait
for a mutex to become unlocked, wait for a semaphore etc. The number of threads
is only limited by the amount of available RAM.

A Q▪Kernel™ based solution is multi-threaded meaning that every thread operates
on its own. It can shield all functionality from other threads or can communicate
with other threads.

Threads can be in a 3 states:

• Run State, meaning that the thread is currently running. Only one thread in
the whole system can be in that state.

• Ready State, meaning the thread is ready to run but the system does not
allow it to run because there are threads with a higher priority that are also in
the ready or run state.

• Wait State, meaning that the thread is waiting on something to happen. That
can be an event a timer to expire, etc.

Threads have their own EventSet they can wait for. Other threads or fibers can
signal the EventSet but can't wait for it.

Threads can be created or removed by other threads. The thread object is
managed object that can be created, opened or closed. A thread that has done its
tasks and ends it execution is automatically removed by the system and its
resources are returned to the resource pool.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 15

3.10. Fibers
Fibers are mostly used for high dataflow tasks. Fibers are optimized for cooperative
scheduling and very fast interrupt response to support the tight time window for
high speed dataflow applications. Fibers operate in a single stack environment to
sustain the required very fast context switches.

Q▪Kernel™ provides three types of fibers, priority based fibers, queued based fibers
and scheduled fibers.

• Priority based fibers run directly after interrupts and is the fastest way for an
interrupt to communicate with the rest of the system. The overhead is
extremely low and the interrupt handling is very fast.

• Queue based fibers run after the priority fibers and as the name implies are
queued together with one or two parameters. These fibers are mostly used to
implement drivers.

• Scheduled fibers are functions that are started by the scheduler and are
expired timers, alarms etc.

The use of fibers saves precious memory because they use a single stack
mechanism. The priority and queued based fibers give Q▪Kernel™ a significant
advantage over the competition for fast interrupt and data handling. The context
switch time is also significantly faster.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 16

4. Managed Kernel Objects
Kernel object are used by threads or fibers to communicate with mutexes,
semaphores, timers etc. They will be created by one thread and can be opened by
other threads.

Competitive products use a global variable so multiple threads can use the object.
Other threads don’t know if the object is already created and it requires the
developer to build code to manage that.

Q▪Kernel™ objects are managed and a thread that opens an object can wait until
another thread creates it. The name of the object is used as an identifier for the
object. This mechanism simplifies the synchronization during system startup.

The managed kernel objects all have three function calls in common. The "Create"
to create a new object, "Open" to open an existing object and "Close" to end the
use of that object and return the resources like memory back to the pool.

4.1. Mutexes
A mutex object is a synchronization object to provide threads access to shared
resources. Only one thread at a time can own a mutex object, whose name comes
from the fact that it is useful in coordinating mutually exclusive access to a shared
resource. A mutex is a managed object so there is a qMtxCreate(), qMtxOpen()
and qMtxClose().

Any thread with a handle to a mutex object can use the qMtxLock() function to
request ownership of the mutex object. If the mutex object is owned by another
thread, the wait function blocks the requesting thread until the owning thread
releases the mutex object using the qMtxUnlock() function. The return value of the
wait function indicates whether the function returned with the state of the mutex
being locked or it timed-out. If more than one thread is waiting on a mutex, the
thread with the highest priority is selected.

After a thread obtains ownership of a mutex, it can specify the same mutex in
repeated calls to the wait-functions without blocking its execution. This prevents a
thread from deadlocking itself while waiting for a mutex that it already owns. The
thread only has to call the qMtxUnlock() once to release ownership of the mutex.

In scheduling, priority inversion is the scenario where a low priority thread holds a
shared resource that is required by a high priority thread. This causes the
execution of the high priority thread to be blocked until the low priority thread has
released the resource, effectively "inverting" the relative priorities of the two
threads. If some other medium priority thread attempts to run in the interim, it will
take precedence over both the low priority thread and the high priority thread.
Q▪Kernel™ implements the priority inheritance algorithm to eliminate priority
inversions.

4.1.1 Critical Sections

Q▪Kernel™ defines a critical section as a piece of code that accesses a shared
resource (data structure or device) that must not be concurrently accessed by
more than one thread, fiber or the scheduler. Some synchronization mechanism is
required at the entry and exit of the critical section to ensure exclusive use.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 17

The Q▪Kernel™ implementation of a critical section suspended thread switching.
This is a very effective low cost way of implementing a critical section. It takes two
cycles to disable the thread switch and it will take also take two cycles to resume
thread switching. If a thread switch request was queued it will be executed
immediately after the critical section ended. Simple defines are available to
implement this behavior.

4.2. Semaphores
Conceptually, a semaphore maintains a set of permits. Semaphores can be
acquired and released. Each qSemAcquire() blocks if necessary until a permit is
available, and then takes it. Each qSemRelease() adds a permit, potentially
releasing a blocking acquirer. However, no actual permit objects are used; the
Semaphore just keeps a count of the number available and acts accordingly.

Semaphores are often used to restrict the number of threads than can access some
(physical or logical) resource or protect access to a resource that contains multiple
entities.

A thread or fiber uses the qSemCreate() function to create a semaphore object.
The creator specifies the initial number of permits and a name for the semaphore
object. Threads can open an existing semaphore object or wait until the semaphore
is created by specifying its name in a call to qSemOpen() function.

When a thread acquires a permit, the count is decremented and when a thread
releases a permit the count is incremented. When a thread attempts to acquire a
permit and no permit is available the thread will be preempted. If more than one
thread is waiting on a semaphore, the thread with the highest priority is selected.

Releasing an permit is possible from an interrupt, fiber or thread.

4.3. EventSets
Threads and fibers can use EventSet objects in a number of situations to notify a
waiting thread about the occurrence of mix of events. EventSets are groups of 16
or 32 binary flags, called event flags, which describe conditions. Threads can wait
for those flags (conditions) to be set. For example, a thread waits for any of 6
conditions when it has to close a valve. Other threads or fibers can set one or more
conditions.

Q▪Kernel™ implements two type of EventSets, the Thread EventSets and Global
EventSets. Thread EventSets belong to the thread and only that thread can wait on
the EventSet, while multiple threads can wait on Global EventSets. Thread
EventSets are faster and require less overhead.

Multiple threads can wait on ANY combination of events flags in one EventSet or on
ALL event flags in one EventSet.

When a thread signals an EventSet, any number of waiting threads that specify the
same EventSet in one of the wait functions, can be released. If more than one
thread is released, the thread with the highest priority is selected to run.

The implemented signaling algorithm allows multiple threads to wait with the clear
option. This is a significant difference with competing products because they clear
flags during the signaling process and that makes signaling unpredictable for other
threads or limits the functionality. Signaling an EventSet is possible from an
interrupt, fiber or thread. This contributes to the flexibility of the EventSets.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 18

4.4. Pipes
Pipes allow communication between threads, fibers and ISR’s and are designed to
support high speed communication without a lot of thread switching.

Fast ISR’s normally operate in the 1 to 10 µSec time frame. A thread operates
more in the 1 millisecond time frame, hundreds of times slower than an ISR. Pipes
are designed to connect the two time domains by providing a FIFO buffer for
information storage and exchange.

Q▪Kernel™ pipes use a FIFO buffer that concurrently can be written to and read
from by threads, fibers and Interrupt Service Routines.

Pipes are not just FIFO buffers that allow concurrent reading and writing but they
also must have the ability to block a thread that tries to write to a full pipe or tries
to read from an empty pipe. Also a blocked reading thread must be activated when
there is (enough) information in the pipe and a blocked writing thread must be
activated when the pipe has (enough) space. Q▪Kernel™ provides a synchronization
mechanism that is very flexible so pipes can be used in a lot of different situation.
Sometimes a reading thread must be activated as soon as one element is put in
the pipe. In other case the reading thread must be activated when more than 80%
of the pipe is full to minimize context switches. This kind of flexibility can be best
realized by notification functions. Those notification functions are defined during
the creation of a pipe and are called “Notify Reader” and “Notify Writer”. When
something is written in a pipe the reader notification is called and when something
is read from a pipe the writer notification is called. The notification functions can
take any action to synchronize threads or just do nothing and wait until there is
more information in the pipe. The notification functions are called with two
parameters; a pointer to the pipe object and the number of blocks that are written
into the pipe or read from the pipe. This information can be used to handle device
information.

As describe above the flexible signal functions allows the developer to combine the
hardware queues with pipes and still find the optimum signaling moment.

4.5. Messages
The Q▪Kernel™ implementation allows variable size messages and Q▪Kernel™ keeps
a use count. The use count keeps track how many threads are using the message.
A message is allocated by the qMsgAlloc() function and the message count is 1. If a
message is send the use count is incremented because the message is in transport.
If a thread de-allocates the message with the function qMsgFree(), the use-count is
decremented. Both sending and receiving thread need to de-allocate the message
before the use-count reaches 0 and the object is returned to the memory pool.
Every thread handles the message as if it owns it. It does not have to administrate
this behavior itself. Message can also be allocated from interrupts. This
functionality combined with pipes makes allocating, de-allocating and sending and
receiving from interrupts a reality. Messages can be sent by using queues, pipes or
can be used in the publish/subscribe mechanism.

4.5.1 Queues

Queues are the primary means of sending and receiving messages between
threads or fibers. Multiple messages can reside in a queue. Queues are very fast
because they exchange pointers between threads and a sending thread will

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 19

recognize that there is a receiver and will short-cut the transfer. Competitive
products work differently and are much slower.

The function qQueReceive() reads a message from the queue and wait if there is
no message available. The function qQueSend() is used to send a message to the
queue and waits if the queue is full.

Often it’s required to synchronize waiting for messages with other events or to
send messages from interrupts. This functionality is provided with pipes. Messages
can be sent and received from pipes, which provide more flexibility.

4.6. Publish/subscribe functionality
Publish/subscribe (or pub/sub) is a messaging pattern where senders (publishers)
are unaware of specific receivers (subscribers). Subscribers express interest in one
or more messages, and only receive messages that are of interest, without
knowledge of what, if any, publishers there are.

This decoupling of publishers and subscribers is called loosely coupling and has a
number of advantages:

• A change in one module does not force a ripple-effect of changes in other
modules. Developing and maintaining software requires less effort and
time due to the decreased inter-module dependency.

• It will be easier to reuse software because there are fewer dependencies.
A software module will be easier to test because dependent modules do
not need to be included.

• No changes are required if the number of subscribers or publishers
changes.

• This pattern promotes agility because a change in the application does
not require that all software modules have to be changed and re-tested.

The Q▪Kernel™ implementation of pub/sub is very simple to implement. A publisher
creates a publish object with the function qPubCreate(). Every publish object has a
name and other publishers and subscribers can get access to this publication by
opening the object by name.

Subscribers can subscribe to a publication and specify the message delivery
method.

The message can be delivered by calling a delivery function, by sending it to a
queue or writing it into a pipe. Depending on the required delivery method the
subscriber has to use one of the following functions, qPubSubscribeFun(),
qPubSubscribePip() and qPubSubscribeQue(), to subscribe to a publication.

• Function delivery can be used to decouple the time domains from
publisher and subscriber.

• Pipe delivery can be used when no information can be lost and the
developer needs full control over the information flow.

• Queue delivery can be used when no information can be lost but the
load is limited. This is the most simple delivery method to implement.

Messages are published with the function qMsgPublish() and the payload is a
Q▪Kernel™ message (pMSG). The Q▪Kernel™ message infrastructure helps the

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 20

developer with the life-time of the message. Every individual subscriber just has to
free the message when done and Q▪Kernel™ will manage the life-time.

Q▪Kernel™ Feature Guide

© 2008-2015 Quasarsoft Ltd. qKernelFeatureGuide V6.0-3343 page 21

5. Performance
Q▪Kernel™ is one of the best performing RTOS’s, because it is tick-less and it uses
the segmented interrupt architecture. The results are in the following table.
FreeRTOS is not in the list because the license agreement prohibits us from
publishing benchmarks. Please check it yourself and it will be clear why they don’t
allow us to publish their performance numbers. For more information download the
performance Information manual from our web-site.

 Cooperative
Scheduling

Preemptive
Scheduling

Interrupt
Processing

Interrupt
Preemptive
Processing

Message
Processing

Synchronization
Processing

Memory
Processing

Q▪Kernel™ 6.0 17,141,251 11,741,503 18,461,234 6,315,823 10,908,076 32,431,922 22,221,851

AVIX 4.0 18,730,514 11,460,380 17,125,013 6,023,870 8,151,857 27,878,435 12,618,419

ThreadX 11,847,800 4,870,885 6,918,050 3,052,151 6,928,383 15,337,354 12,863,624

uc/OS-II 3,909,085 5,259,998 7,387,612 10,293,318 6,814,817

TNKernel 4,138,692 7,784,052 3,180,224 5,722,266 13,623,702 9,745,907

AVA 1,724,948 5,207,762 1,260,190 2,761,154 7,514,799 10,235,182

	1. Architecture
	1.1. Segmented Interrupt Architecture

	2. Architectural features
	2.1. Dual-Mode RTOS
	2.2. Low Power and Tick-less
	2.3. Integrated Power Management
	2.4. Never Disables Interrupts
	2.5. Zero Interrupt Latency and No Interrupt Jitter
	2.6. Hard Real Time

	3. Feature and functionality
	3.1. Threads and Fibers
	3.2. Memory management
	3.2.1 Extended Data Space for Thread Stacks

	3.3. Statistics and Thread & Fiber Tracking
	3.4. Real-time Clock, Alarm and Timer functions
	3.5. Centralized Error Handling
	3.6. Scheduling
	3.7. Minimize RAM usage
	3.8. Advanced API
	3.8.1 Type save parameters

	3.9. Threads
	3.10. Fibers

	4. Managed Kernel Objects
	4.1. Mutexes
	4.1.1 Critical Sections

	4.2. Semaphores
	4.3. EventSets
	4.4. Pipes
	4.5. Messages
	4.5.1 Queues

	4.6. Publish/subscribe functionality

	5. Performance

